Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522316

RESUMEN

BACKGROUND: Glioblastoma (GBM) represents as the most formidable intracranial malignancy. The systematic exploration of natural compounds for their potential applications in GBM therapy has emerged as a pivotal and fruitful avenue of research. PURPOSE: In the present study, a panel of 96 diterpenoids was systematically evaluated as a repository of potential antitumour agents. The primary objective was to discern their potency in overcoming resistance to temozolomide (TMZ). Through an extensive screening process, honatisine, a heptacyclic diterpenoid alkaloid, emerged as the most robust candidate. Notably, honatisine exhibited remarkable efficacy in patient-derived primary and recurrent GBM strains. Subsequently, we subjected this compound to comprehensive scrutiny, encompassing GBM cultured spheres, GBM organoids (GBOs), TMZ-resistant GBM cell lines, and orthotopic xenograft mouse models of GBM cells. RESULTS: Our investigative efforts delved into the mechanistic underpinnings of honatisine's impact. It was discerned that honatisine prompted mitonuclear protein imbalance and elicited the mitochondrial unfolded protein response (UPRmt). This effect was mediated through the selective depletion of mitochondrial DNA (mtDNA)-encoded subunits, with a particular emphasis on the diminution of mitochondrial transcription factor A (TFAM). The ultimate outcome was the instigation of deleterious mitochondrial dysfunction, culminating in apoptosis. Molecular docking and surface plasmon resonance (SPR) experiments validated honatisine's binding affinity to TFAM within its HMG-box B domain. This binding may promote phosphorylation of TFAM and obstruct the interaction of TFAM bound to heavy strand promoter 1 (HSP1), thereby enhancing Lon-mediated TFAM degradation. Finally, in vivo experiments confirmed honatisine's antiglioma properties. Our comprehensive toxicological assessments underscored its mild toxicity profile, emphasizing the necessity for a thorough evaluation of honatisine as a novel antiglioma agent. CONCLUSION: In summary, our data provide new insights into the therapeutic mechanisms underlying honatisine's selective inducetion of apoptosis and its ability to overcome chemotherapy resistance in GBM. These actions are mediated through the disruption of mitochondrial proteostasis and function, achieved by the inhibition of TFAM-mediated mtDNA transcription. This study highlights honatisine's potential as a promising agent for glioblastoma therapy, underscoring the need for further exploration and investigation.


Asunto(s)
ADN Mitocondrial , Diterpenos , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Factores de Transcripción , Glioblastoma/tratamiento farmacológico , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Temozolomida/farmacología , Línea Celular Tumoral , Diterpenos/farmacología , Factores de Transcripción/metabolismo , Ratones , ADN Mitocondrial/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Transcripción Genética/efectos de los fármacos , Ratones Desnudos
2.
Altern Ther Health Med ; 30(1): 419-425, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37820669

RESUMEN

Context: Studies have reported that the incidence and severity of IgA nephropathy (IgAN) are closely related to the imbalance of the intestinal flora. Imbalance of the intestinal flora may cause abnormalities, such as intestinal mucosal immunity or mesenteric B1 lymphocyte subsets. These can lead to an increase in immunoglobulin A (IgA) production and IgA structural changing, which can eventually cause IgA1 deposition in the glomerular mesangial area and nephritis. Objective: The study intended to explore whether the LPS/TLR4 pathway regulates mesenteric B cells, secreting Gd-IgA1 to induce IgA nephropathy. Design: The research team designed an animal study. Setting: The study took place at Department of Nephrology, Minhang Hospital, Fudan University. Animals: The animals were 60 specific pathogen free (SPF) C57BL/6 (B6, H-2b) male mice from that were 6-8 weeks old and weighed 20-25 grams. Intervention: The research team established a mouse model of IgA nephropathy. The team created five groups of mice: (1) the NC group, a normal negative control group without induced nephropathy and with no treatments; (2) the IgA nephropathy (IgAN) group, a positive control group with induced nephropathy and with no treatments; (3) the IgAN+anti-TLR4 group, an intervention group, with induced nephropathy and with a TLR4-antibody (anti-TLR4) treatment; (4) the IgAN+GEC group, an intervention group, with induced nephropathy and with treatment with glutamine enteric-coated capsules (GEC); and (5) the IgAN+anti-TLR4+GEC group, an intervention group, with induced nephropathy and with treatment with anti-TLR4 and GEC. Outcome Measures: The research team collected the blood and urine of all the mice and used an enzyme-linked immunoassay (ELISA) to analyze the levels of blood creatinine, urine protein, and urea nitrogen (BUN). The team also used the ELISA to analyze signal molecules for serum inflammation: interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP-1), cyclooxygenase-2 (COX2), and galactose-deficient IgA1(Gd-IgA1). The team analyzed the distribution and content of IgA+B220+B lymphocytes in the intestinal tissues of all the mice, using tissue immunofluorescence tracking technology, and used hematoxylin-eosin (HE) staining to analyze the pathological damage in the kidney tissue. For analysis of glomerular IgA deposition, the team used a tissue immunofluorescence technique, and for detection of protein expression-toll-like receptor 4 (TLR4), B-cell activating factor (BAFF), and a proliferation-inducing ligand (APRIL)-in mesenteric lymphoid tissues, the team used western blot analysis. Results: For the five groups of mice, the amount or degree of the physiological indicators and inflammatory factors that ELISA detected, the B lymphocytes and IgA sedimentation that immunofluorescence tracing measured, the kidney pathological that HE staining detected, and the expression of immune-related proteins that western blotting measured, all showed a common trend: IgAN group> IgAN+ glomerular endothelial cells (GEC) group> IgAN+anti-TLR4 group> IgAN+anti-TLR4+GEC group> NC group. Conclusions: The TLR4 antibody and GEC for the treatment of the intestinal tract can regulate and repair intestinal function, so that IgAN can also be relieved at the same time. The results supported the hypothesis that a relationship exists between IgAN and the LPS/TLR4 pathway that regulates mesenteric B cells to secrete low-glycosylated poly-IgA1, which provides a new potential therapeutic plan for IgA nephritis.


Asunto(s)
Glomerulonefritis por IGA , Nefritis , Humanos , Masculino , Ratones , Animales , Glomerulonefritis por IGA/metabolismo , Glomerulonefritis por IGA/patología , Receptor Toll-Like 4 , Lipopolisacáridos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratones Endogámicos C57BL , Inmunoglobulina A/metabolismo
3.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37879504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Asunto(s)
Atractylodes , Staphylococcus aureus Resistente a Meticilina , Piodermia , Perros , Animales , Ratones , Amicacina , Interleucina-6 , Piodermia/tratamiento farmacológico , Piodermia/veterinaria , Antibacterianos/farmacología
4.
Fitoterapia ; 172: 105787, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38122855

RESUMEN

Eleutherine bulbosa (Mill.) Urb. is a medicinal and edible plant with various benefits for humans and animals. In this work, four new phenolic constituents (1-4), along with six known phenolic compounds (5-10) were obtained from the red bulbs of E. bulbosa. Their structures with absolute configurations were characterized by extensive spectroscopic analysis, combined with HR-ESI-MS and quantum mechanical electronic circular dichroism (ECD). Compounds 1 and 2 are novel homologous and heterodimers, respectively, featuring an unusual spiro ring system. All isolated phenolic constituents were tested for their antibacterial effects. The results revealed four phenolic compounds 1-3 and 7 showed moderate antibacterial activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli with minimum inhibitory concentration (MIC) values ranging from 15.6 to 250.0 µg/mL.


Asunto(s)
Antibacterianos , Iridaceae , Animales , Humanos , Estructura Molecular , Staphylococcus aureus , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Fenoles/farmacología , Fenoles/química , Escherichia coli
5.
ACS Appl Bio Mater ; 6(10): 3984-4001, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37707491

RESUMEN

In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.

6.
Molecules ; 28(13)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37446862

RESUMEN

Traditional Chinese medicine has been proven to be of great significance in cardioprotective effects. Clinopodium chinense (Lamiaceae) has unique advantages in the treatment and prevention of cardiovascular diseases. Tournefolic acid B (TAB) was proven to be a potent component against myocardial ischemia reperfusion injury (MIRI) from Clinopodium chinense (Lamiaceae). This article will attempt to establish a gram-scale synthesis method of TAB and discuss the structure-activity relationship of its analogs. The total synthesis of TAB was completed in 10 steps with an overall yield of 13%. In addition, analogs were synthesized, and their cardioprotective activity was evaluated on the hypoxia/reoxygenation of H9c2 cells. Amidation of the acid position is helpful to the activity, while methylation of phenolic hydroxyl groups greatly decreased the cardioprotective activity. The easily prepared azxepin analogs also showed cardioprotective activity. Most of the clogP values calculated by Molinspiration ranged from 2.5 to 5, which is in accordance with Lipinski's rule of 5. These findings represent a novel kind of cardioprotective agent that is worthy of further study.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Daño por Reperfusión Miocárdica , Humanos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Cardiotónicos/farmacología , Relación Estructura-Actividad , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos , Apoptosis
7.
Colloids Surf B Biointerfaces ; 228: 113392, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290198

RESUMEN

Herein, a nonreversible heat-induced supramolecular gel based on natural products was reported for the first time. This natural triterpenoid, fupenzic acid (FA), isolated from the roots of Rosa laevigata, was discovered to be capable of forming supramolecular gel spontaneously in 50 % ethanol-water solution induced by heating. Distinguished from the common thermosensitive gels, the FA-gel showed a distinctive nonreversible phase transition from the liquid to gel state upon heating. In this work, the entire gelation process of FA-gel induced by heating was recorded digitally by microrheology monitor. And a unique heat-induced gelation mechanism based on self-assembled FA has been proposed by using various experimental methods and molecular dynamics (MD) simulation. Its excellent injectability and stability were also demonstrated. Furthermore, the FA-gel had been evaluated to exhibit better anti-tumor activity and higher biosafety comparing with its equivalent free-drug, which opened up a new possibility to reinforce antitumor efficacy by using natural product gelator originated from traditional Chinese medicine (TCM) without any complicated chemical modifications.


Asunto(s)
Calor , Geles/química , Transición de Fase
8.
Nanoscale ; 15(1): 204-214, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36478183

RESUMEN

Electrochemically converting nitrate ions back to ammonia can not only eliminate water pollution but also obtain valuable ammonia without a serious carbon footprint, and is thus deemed as an efficient supplement to the traditional Haber-Bosch process. Currently reported catalysts can achieve a single electrode reaction in the electrochemical nitrate reduction reaction. However, the bifunctionality of a single catalyst for both cathodic and anodic reactions has not yet been reported. Herein, we report Fe-doped layered α-Ni(OH)2 with expanded interlayer spacing as an efficient bifunctional catalyst for the nitrate reduction reaction and oxygen evolution reaction. The expanded interlayer spacing facilitates in situ electrochemical potassium ion intercalation between layers. In situ Raman spectroscopy characterization confirms that both the nitrate reduction reaction and oxygen evolution reaction are confined between layers and are triggered by the accumulation of potassium ions. The obtained α-Ni0.881Fe0.119(OH)2 nanosheets deliver an ammonia yield rate of 8.1 mol gcat.-1 h-1 with a NO3--to-NH3 faradaic efficiency of 97.5% at the cathode. The overpotential of oxygen generation at 10 mA cm-2 is reduced to 254 mV at the anode. As a bifunctional catalyst in overall electrolysis, the current density of α-Ni0.881Fe0.119(OH)2 reaches 24.8 mA cm-2 at a voltage of 2.0 V and performs continuously for 50 h with a current retention of 80.2%.

9.
Molecules ; 27(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36080468

RESUMEN

Four new daphnane-type diterpenes named tianchaterpenes C-F (1-4) and six known ones were isolated from Stelleropsis tianschanica. Their structures were elucidated based on chemical and spectral analyses. The comparisons of calculated and experimental electronic circular dichroism (ECD) methods were used to determine the absolute configurations of new compounds. Additionally, compounds 1-10 were evaluated for their cytotoxic activities against HGC-27 cell lines; the results demonstrate that compound 2 had strong cytotoxic activities with IC50 values of 8.8 µM, for which activity was better than that of cisplatin (13.2 ± 0.67 µM).


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Diterpenos , Medicamentos Herbarios Chinos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Diterpenos/química , Diterpenos/farmacología , Medicamentos Herbarios Chinos/química , Estructura Molecular
10.
Front Nutr ; 9: 889131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845811

RESUMEN

Background: Low protein supplemented with α-ketoacid diet (LKD) was recommended to be an essential intervention to delay the progression of chronic kidney disease (CKD) in patients who were not yet on dialysis. Aberrant gut microbiota and metabolism have been reported to be highly associated with CKD. However, the effect of LKD on gut microbiota and related fecal metabolism in CKD remains unclear. Methods: Mice were fed with normal protein diet (NPD group), low protein diet (LPD group), and low protein diet supplemented with α-ketoacid (LKD group) after 5/6 nephrectomy. At the end of the study, blood, kidney tissues, and feces were collected for biochemical analyses, histological, 16S rRNA sequence of gut microbiome, and untargeted fecal metabolomic analyses. Results: Both LKD and LPD alleviate renal failure and fibrosis, and inflammatory statement in 5/6 nephrectomized mice, especially the LKD. In terms of gut microbiome, LKD significantly improved the dysbiosis induced by 5/6Nx, representing increased α-diversity and decreased F/B ratio. Compared with NPD, LKD significantly increased the abundance of g_Parasutterella, s_Parabacteroides_sp_CT06, f_Erysipelotrichaceae, g_Akkermansia, g_Gordonibacter, g_Faecalitalea, and s_Mucispirillum_sp_69, and decreased s_Lachnospiraceae_bacterium_28-4 and g_Lachnoclostridium. Moreover, 5/6Nx and LKD significantly altered fecal metabolome. Then, multi-omics analysis revealed that specific metabolites involved in glycerophospholipid, purine, vitamin B6, sphingolipid, phenylalanine, tyrosine and tryptophan biosynthesis, and microbes associated with LKD were correlated with the amelioration of CKD. Conclusion: LKD had a better effect than LPD on delaying renal failure in 5/6 nephrectomy-induced CKD, which may be due to the regulation of affecting the gut microbiome and fecal metabolic profiles.

11.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889467

RESUMEN

From the dried vines of Aspidopterys obcordata Hemsl, five new polyoxypregnane glycosides, named obcordatas J-N (1-5), were obtained. Their structures were fully elucidated and characterized by HRESIMS and extensive spectroscopic data. In addition, all of the new compounds were screened for their antinephrolithiasis activity in vitro. The results showed that compounds 1-3 have prominent protective effects on calcium oxalate crystal-induced human kidney 2 (HK-2) cells, with EC50 values ranging from 6.72 to 14.00 µM, which is consistent with the application value of A. obcordata in folk medicine for kidney stones.


Asunto(s)
Medicamentos Herbarios Chinos , Malpighiaceae , Saponinas , Medicamentos Herbarios Chinos/química , Glicósidos/química , Glicósidos/farmacología , Humanos , Malpighiaceae/química , Estructura Molecular , Saponinas/química
12.
Front Chem ; 10: 944972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860628

RESUMEN

Terpenes possess a wide range of structural features and pharmaceutical activities and are promising for drug candidates. With the aim to find bioactive terpene molecules, eight new compounds were isolated from the medicinal plant Nepeta bracteata Benth., including seven new abietane-type diterpenoids (1-7), along with a new ursane-type triterpenoid (8). The structures of compounds 1-8 were elucidated through the detailed spectroscopic analyses of their 1D and 2D NMR and MS data, and the absolute configurations of compounds 1-7 were determined by comparing their experimental and calculated ECD spectra. Compound 1 was a novel degraded carbon diterpene with the disappearing of methyl signal at C-19, while compound 7 possessed a new norabietane-type diterpenoid carbon skeleton with the presence of five-membered lactone arising from ring rearrangement. The anti-inflammatory of all obtained isolates were evaluated on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the results of anti-inflammatory activity screening showed that compared with the LPS model group, all compounds were significantly down-regulation the TNF-α inflammatory factor at the specific concentration, except for compound 6.

13.
Fitoterapia ; 161: 105251, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35803523

RESUMEN

Three novel geranylhydroquinone derived meroterpenoids, named clavilactones J and K (1-2) and clavipol C (3), were isolated from the basidiomycete Clitocybe clavipes. Their structures were unambiguously identified by extensive spectroscopic data analysis, and the electronic circular dichroism (ECD) calculation, Gauge-Including Atomic Orbitals (GIAO) NMR calculations and Mo2(OAc)4-induced electronic circular dichroism experiments were used to establish their absolute configurations. Compound 1, with two epoxy groups located at the 10-membered carbocycle, is uncommon in the reported meroterpenoids from C. clavipes. All the obtained compounds (1-3) were tested for their cytotoxic activity against human tumor cell line HGC-27 by using the MTT assay. All the compounds exhibited moderate cytotoxic activities against HGC-27 cell with IC50 values ranging from 33.5 to 56.6 µM.


Asunto(s)
Agaricales , Antineoplásicos , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Estructura Molecular , Terpenos
14.
Phytother Res ; 36(3): 1297-1309, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35088915

RESUMEN

Enhancing glucagon-like peptide 1 (GLP-1) signaling with a dipeptidyl peptidase IV (DPP-4) inhibitor might exert protective effects on Alzheimer's disease (AD). We found that intragastric administration of Gramcyclin A (10, 20 and 40 mg/kg), a novel DPP-4 inhibitor, for 3 months significantly reversed cognitive decline in APP/PS1/tau triple transgenic mice in a dose-dependent manner. Gramcyclin A treatment markedly reduced Aß plaques as well as the insoluble and soluble forms of Aß40 and Aß42 in the hippocampus of APP/PS1/tau mice. Treatment with Gramcyclin A remarkedly decreased the level of microglia and suppressed neuroinflammation in the hippocampus of APP/PS1/tau mice. Moreover, Gramcyclin A treatment could increase brain glucose uptake in APP/PS1/tau mice, as detected by 18-fluoro-2-deoxyglucose (18 F-FDG) micro-positron emission tomography (micro-PET) imaging. Furthermore, Gramcyclin A significantly increased expression of glucagon-like peptide-1 (GLP-1), GLP-1R, proliferator-activated receptor gamma coactivator (PGC)-1α and glucose transporter 4 (GLUT4), and inhibited insulin receptor (IRS)-1 phosphorylation and tau hyperphosphorylation in the hippocampus of APP/PS1/tau mice. Collectively, Gramcyclin A conferred protective effects against AD via enhancing brain GLP-1-dependent glucose uptake. The DPP-4 inhibitor Gramcyclin A might be a potential therapeutic drug for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Inhibidores de la Dipeptidil-Peptidasa IV , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/farmacología , Animales , Encéfalo , Cognición , Disfunción Cognitiva/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Glucosa/metabolismo , Hipocampo , Ratones , Ratones Transgénicos
15.
Front Pharmacol ; 12: 764175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899318

RESUMEN

Atherosclerosis is an epidemic across the globe[A1], and its morbidity and mortality remain high, involving various complications and poor prognoses. In atherosclerosis, endothelial cells (ECs) dysfunction, vascular smooth muscle cells (VSMCs) migration and proliferation, foam cell formation, and inflammatory cell recruitment contribute to disease progression. Vascular stem cells (VSCs) also play a critical role in the cardiovascular system. Important data showed that the simultaneous increase of proliferation and apoptosis of VSMCs is the main cause of graft vein stenosis, suggesting that inhibition of VSMCs proliferation and apoptosis simultaneously is an important strategy for the treatment of atherosclerotic stenosis. Complementary and alternative medicine use among patients with cardiovascular disease (CVD) is growing. Berberine is an extract of Chinese traditional herbs that is known for its antimicrobial and anti-inflammatory effects in the digestive system. Its underlying anti-CVD mechanisms are currently attracting interest, and its pharmacological actions, such as antioxidation, regulation of neurotransmitters and enzymes, and cholesterol-lowering effects, have been substantiated. Recent studying found that berberine could inhibit both the proliferation and apoptosis of VSMCs induced by mechanical stretch stress simultaneously, which suggests that berberine might be an excellent drug to treat atherosclerosis. This review will focus on the recent progress of the effect of berberine on vascular cells, especially VSMCs, to provide important data and a new perspective for the application of berberine in anti-atherosclerosis.

16.
Molecules ; 26(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34361712

RESUMEN

The genus Maytenus is a member of the Celastraceae family, of which several species have long been used in traditional medicine. Between 1976 and 2021, nearly 270 new compounds have been isolated and elucidated from the genus Maytenus. Among these, maytansine and its homologues are extremely rare in nature. Owing to its unique skeleton and remarkable bioactivities, maytansine has attracted many synthetic endeavors in order to construct its core structure. In this paper, the current status of the past 45 years of research on Maytenus, with respect to its chemical and biological activities are discussed. The chemical research includes its structural classification into triterpenoids, sesquiterpenes and alkaloids, along with several chemical synthesis methods of maytansine or maytansine fragments. The biological activity research includes activities, such as anti-tumor, anti-bacterial and anti-inflammatory activities, as well as HIV inhibition, which can provide a theoretical basis for the better development and utilization of the Maytenus.


Asunto(s)
Alcaloides/química , Maitansina/análogos & derivados , Maytenus/química , Fitoquímicos/química , Sesquiterpenos/química , Triterpenos/química , Alcaloides/clasificación , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/aislamiento & purificación , Fármacos Anti-VIH/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Humanos , Maitansina/aislamiento & purificación , Maitansina/farmacología , Maytenus/metabolismo , Estructura Molecular , Fitoquímicos/clasificación , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Plantas Medicinales , Sesquiterpenos/clasificación , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Relación Estructura-Actividad , Triterpenos/clasificación , Triterpenos/aislamiento & purificación , Triterpenos/farmacología
17.
Food Funct ; 12(12): 5539-5550, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34008600

RESUMEN

Astragali Radix is an edible herb that has been employed in Traditional Chinese medicine (TCM) and has recently been recognized by various countries; however, it is also one of the most extensively sulfur-fumigated TCM components. This study designed a UPLC-QTOF-MS/MS-guided isolation approach to generate sulfur-containing derivatives, and a novel sulfur-containing marker, namely, astragaloside sulfate, was characterized based on 1D and 2D NMR, which were derived from the main component of Astragali Radix, namely, astragaloside. Pharmacological experiments also showed that the activity of astragaloside decreased after it was converted into sulfate. Moreover, a rapid assay for the determination of astragaloside sulfate content by UPLC-QTRAP-MS/MS was established to evaluate samples that were non-fumigated and sulfur-fumigated at different levels. The method was applied to determine the content of JGS in the different batches of commercial samples. This research reveals that the practical procedure-based typical sulfur-containing indicator can be utilized for quality assurance of sulfur-fumigated and non-fumigated Astragali Radix.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Fumigación/métodos , Azufre/química , Espectrometría de Masas en Tándem/métodos , Apoptosis/efectos de los fármacos , Astragalus propinquus , Supervivencia Celular , Células Hep G2 , Humanos
18.
Neuropeptides ; 87: 102134, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33639357

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and the deposition of Lewy bodies. Mitochondrial dysfunction, oxidative stress, and autophagy dysfunction are involved in the pathogenesis of PD. Ghrelin is a brain-gut peptide that has been reported that protected against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyran (MPTP)/MPP+-induced toxic effects. In the present work, human neuroblastoma SH-SY5Y cells were exposed to rotenone as a PD model to explore the underlying mechanism of ghrelin. We found that ghrelin inhibited rotenone-induced cytotoxicity, mitochondrial dysfunction, and apoptosis by improving cell viability, increasing the ratio of red/green of JC-1, inhibiting the production of reactive oxidative species (ROS), and regulating Bcl-2, Bax, Cytochrome c, caspase-9, and caspase-3 expression. Besides, ghrelin promoted mitophagy accompanied by up-regulating microtubule-associated protein 1 Light Chain 3B-II/I(LC3B-II/I) and Beclin1 but decreasing the expression of p62. Moreover, ghrelin promoted PINK1/Parkin mitochondrial translocation. Additionally, we investigated that ghrelin activated the AMPK/SIRT1/PGC1α pathway and pharmacological inhibition of AMPK and SIRT1 abolished the cytoprotection of ghrelin, decreased the level of mitophagy, and PINK1/Parkin mitochondrial translocation. Taken together, our findings suggested that mitophagy and AMPK/SIRT1/PGC1α pathways were related to the cytoprotection of ghrelin. These findings provided novel insights into the underlying mechanisms of ghrelin, further mechanistic studies on preclinical and clinical levels are required to be conducted with ghrelin to avail and foresee it as a potential agent in the treatment and management of PD.


Asunto(s)
Ghrelina/fisiología , Mitocondrias/efectos de los fármacos , Mitofagia/fisiología , Proteínas del Tejido Nervioso/fisiología , Rotenona/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/fisiología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuroblastoma , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Proteínas Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno , Rotenona/antagonistas & inhibidores , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
19.
J Ethnopharmacol ; 264: 113206, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32750460

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine is generally extracted from Rhizoma Coptidis (Coptis chinensis Franch), a traditional Chinese medicine, which can be used in the treatment of intestinal diseases, respiratory infections and cardiovascular diseases. Berberine is especially effective for the treatment of gastrointestinal disorders such as diarrhea because of the effect of heat-clearing and detoxifying in traditional Chinese medicine theory. AIM OF THE STUDY: This study aimed to examine the protective effect of berberine (BBR) on the damaged colonic epithelial barrier caused by peritoneal dialysis fluid (PDF). METHODS: The damage to intestinal epithelial barrier was examined by intraperitoneally injecting 4.25% dextrose-containing PDF in mice and establishing a long-term PD model in rats with renal failure. Then, the therapeutic potential of berberine on PD-related colonic injuries was examined. T84 colonic epithelial cells were used to test the effect of PDF and berberine in vitro. The damaging effect of PDF and the protective effect of berberine were evaluated by histology staining, histofluorescence and transmission electron microscopy. The migration of colonic epithelial cell and actin-related protein 2 (Arp2) were tested by wound healing assay and Western blot to determine the possible mechanism in vitro. RESULTS: PD administration induced intestinal epithelial barrier dysfunction in the colon, and berberine alleviated the injury by increasing the tight junction and adhesion junction protein, both in vivo and in vitro. Berberine could also improve the morphology of microvillus. In the wound healing assay, berberine exhibited the ability to promote cell migration, indicating that berberine could probably recover the function of intestinal epithelial cells when the intestinal epithelial barrier was damaged by the PDF. CONCLUSIONS: The present study demonstrates that berberine can ameliorate intestinal epithelial barrier dysfunction in the colon caused by long-term PDF through improving cell migration.


Asunto(s)
Berberina/farmacología , Movimiento Celular/efectos de los fármacos , Colon/efectos de los fármacos , Soluciones para Diálisis/toxicidad , Mucosa Intestinal/efectos de los fármacos , Animales , Berberina/uso terapéutico , Movimiento Celular/fisiología , Células Cultivadas , Colon/patología , Soluciones para Diálisis/administración & dosificación , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Diálisis Peritoneal/efectos adversos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/fisiología
20.
Med Res Rev ; 40(6): 2339-2385, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32666531

RESUMEN

The human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) epidemic is one of the world's most serious health challenges. Although combination antiretroviral therapy provides effective viral suppression, current medicines used against HIV cannot completely eradicate the infectious disease and often have associated toxicities and severe side effects in addition to causing drug resistance. Therefore, the continued development of new antiviral agents with diverse structures and novel mechanisms of action remains a vital need for the management of HIV/AIDS. Natural products are an important source of drug discovery, and certain triterpenes and their analogs have demonstrated potential as pharmaceutical precursors for the treatment of HIV. Over the past decade, natural triterpenoids and analogs have been extensively studied to find new anti-HIV drugs. This review discusses the anti-HIV triterpenoids and analogs reported during the period of 2009-2019. The article includes not only a comprehensive review of the recent anti-HIV agent development from the perspective of medicinal chemistry, but also discusses structure-activity relationship analyses of the described triterpenoids.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Triterpenos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Extractos Vegetales , Relación Estructura-Actividad , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA