Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1067920, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923128

RESUMEN

Introduction: Saposhnikovia divaricata is a traditional Chinese medicine in China, which is widely used in clinic. The root of S. divaricata is often used as medicine, but little research has been done on its other tissues. Methods: In this study, the contents of root and leaf of S. divaricata were determined by HPLC, the differentially expressed genes were screened by transcriptome sequencing at molecular level, and then verified by network pharmacology. Results: The results showed that the content of 4'-O-ß-D-glucosyl-5-O-methylvisamminol in the leaves was significantly higher than that in the roots, which was about 3 times higher than that in the roots. In addition, 10 differentially expressed key enzyme genes were screened in plant hormone signal transduction, phenylpropanoid and flavonoid biosynthetic pathways. C4H and CYP98A were up-regulated in root, while F3H was down-regulated in root. They can be used as important candidate genes for the mechanism of quality difference of S. divaricata. Finally, network pharmacological validation showed that 5-O-methylvesamitol plays an important role in the treatment of ulcerative colitis. Discussion: These findings not only provide insight into flavonoid biosynthesis in S. divaricata associated molecular regulation, but also provide a theoretical basis for the development and utilization of S. divaricata.

2.
Environ Pollut ; 255(Pt 1): 113157, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31541838

RESUMEN

As one of the highest energy consuming and polluting industries, the power generation industry is an important source of particulate matter emissions. Recently, implementation of ultra-low emission technology has changed the emission characteristic of fine particulate matter (PM2.5). In this study, PM2.5 emitted from four typical power plants in China was sampled using a dilution channel sampling system, and analyzed for elements, water-soluble ions and carbonaceous fractions. The results showed that PM2.5 concentrations emitted from the four power plants were 0.78 ±â€¯0.16, 0.63 ±â€¯0.09, 0.29 ±â€¯0.07 and 0.28 ±â€¯0.01 mg m-3, respectively. Emission factors were 0.004-0.005 g/kg coal, nearly 1-2 orders of magnitude lower than those reported in previous studies. The highest proportions of PM2.5 consisted of organic carbon (OC), SO42-, elemental carbon (EC), NH4+, Al and Cl-. Coefficients of divergence (CDs) were in the ranges 0.22-0.41 (for an individual plant), 0.43-0.69 (among different plants), and 0.60-0.99 (in previous studies). The results indicated that the source profiles of each tested power plant were relatively similar, but differed from those in previous studies. Enrichment factors showed elevated Se and Hg, in accordance with the source markers Se and As. Comparing source profiles with previous studies, the proportion of OC, EC and NH4+ were higher, while the proportion of Al in PM2.5 were relatively lower. The OC/EC ratio became concentrated at ∼5. Results from this study can be used for source apportionment and emission inventory calculations after implementation of ultra-low emission technologies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Centrales Eléctricas , Aluminio/análisis , Arsénico/análisis , Carbono/análisis , China , Carbón Mineral/análisis , Mercurio/análisis , Selenio/análisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA