Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Agric Food Chem ; 70(18): 5701-5714, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35502792

RESUMEN

Understanding the microbial and chemical diversities, as well as what affects these diversities, is important for modern manufacturing of traditional fermented foods. In this work, Chinese dark teas (CDTs) that are traditional microbial fermented beverages with relatively high sample diversity were collected. Microbial DNA amplicon sequencing and mass spectrometry-based untargeted metabolomics show that the CDT microbial ß diversity, as well as the nonvolatile chemical α and ß diversities, is determined by the primary impact factors of geography and manufacturing procedures, in particular, latitude and pile fermentation after blending. A large number of metabolites sharing between CDTs and fungi were discovered by Feature-based Molecular Networking (FBMN) on the Global Natural Products Social Molecular Networking (GNPS) web platform. These molecules, such as prenylated cyclic dipeptides and B-vitamins, are functionally important for nutrition, biofunctions, and flavor. Molecular networking has revealed patterns in metabolite profiles on a chemical family level in addition to individual structures.


Asunto(s)
Camellia sinensis , Alimentos Fermentados , China , Fermentación , Metabolómica/métodos
2.
Microbiome ; 9(1): 184, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493333

RESUMEN

BACKGROUND: Alteration of the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Epigallocatechin-3-gallate (EGCG), a major bioactive constituent of green tea, is known to be beneficial in IBD alleviation. However, it is unclear whether the gut microbiota exerts an effect when EGCG attenuates IBD. RESULTS: We first explored the effect of oral or rectal EGCG delivery on the DSS-induced murine colitis. Our results revealed that anti-inflammatory effect and colonic barrier integrity were enhanced by oral, but not rectal, EGCG. We observed a distinct EGCG-mediated alteration in the gut microbiome by increasing Akkermansia abundance and butyrate production. Next, we demonstrated that the EGCG pre-supplementation induced similar beneficial outcomes to oral EGCG administration. Prophylactic EGCG attenuated colitis and significantly enriched short-chain fatty acids (SCFAs)-producing bacteria such as Akkermansia and SCFAs production in DSS-induced mice. To validate these discoveries, we performed fecal microbiota transplantation (FMT) and sterile fecal filtrate (SFF) to inoculate DSS-treated mice. Microbiota from EGCG-dosed mice alleviated the colitis over microbiota from control mice and SFF shown by superiorly anti-inflammatory effect and colonic barrier integrity, and also enriched bacteria such as Akkermansia and SCFAs. Collectively, the attenuation of colitis by oral EGCG suggests an intimate involvement of SCFAs-producing bacteria Akkermansia, and SCFAs, which was further demonstrated by prophylaxis and FMT. CONCLUSIONS: This study provides the first data indicating that oral EGCG ameliorated the colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into EGCG-mediated remission of IBD and EGCG as a potential modulator for gut microbiota to prevent and treat IBD. Video Abstract.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Sulfato de Dextran , Modelos Animales de Enfermedad , Homeostasis , Ratones , Ratones Endogámicos C57BL , Polifenoles/farmacología ,
3.
J Agric Food Chem ; 68(41): 11402-11411, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32864960

RESUMEN

The colonic mucus barrier serves as a primary defense against enteric pathogens; destruction of this mucus layer has been observed in ulcerative colitis patients. This study aims to investigate the possibility of rebuilding the colon mucus layer through puerarin supplementation, which can stimulate mucin secretion and goblet cells differentiation. After puerarin supplementation, the thickness of colon mucus layer was increased and the permeability was reduced. The erosion of intestinal epithelium by bacteria was blocked, and the loss of epithelial integrity was alleviated. Puerarin also altered the composition of mucin-utilizing bacteria, which influenced the mucus permeability. Levels of short-chain fatty acids (SCFAs) were increased after puerarin supplementation, which as a direct source of energy for the proliferation of epithelia and goblet cells. This study demonstrated that enhancement of mucin secretion to relieve ulcerative colitis (UC) by puerarin supplementation is feasible, and the regulation of mucin-utilizing bacteria and the increased levels of SCFAs may be the main reasons.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Mucosa Intestinal/metabolismo , Isoflavonas/administración & dosificación , Mucinas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Femenino , Microbioma Gastrointestinal , Células Caliciformes/metabolismo , Células Caliciformes/microbiología , Humanos , Mucosa Intestinal/microbiología , Moco/metabolismo , Moco/microbiología , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Ratas , Ratas Sprague-Dawley
4.
J Cell Physiol ; 235(12): 9933-9945, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32542807

RESUMEN

The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients' need for functional and aesthetically pleasing scars. For the wound healing process, new blood vessels which can deliver nutrients and oxygen to the wound area are necessary. In this study, we investigated the pro-angiogenesis ability and mechanism in wound healing of paeoniflorin (PF), which is a traditional Chinese medicine. In our in vitro results, the ability for proliferation, migration and in vitro angiogenesis in human umbilical vein endothelial cells was promoted by coculturing with PF (1.25-5 µM). Meanwhile, molecular docking studies revealed that PF has excellent binding abilities to phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT), and consistent with our western blot results, that PF suppressed PI3K and AKT phosphorylation. Furthermore, to investigate the healing effect of PF in vivo, we constructed a full-thickness cutaneous wound model in rats. PF stimulated the cellular proliferation status, collagen matrix deposition and remodeling processes in vitro and new blood vessel formation at the wound bed resulting in efficient wound healing after intragastric administration of 10 mg·kg-1 ·day-1 in vivo. Overall, PF performed the pro-angiogenetic effect in vitro and accelerating wound healing in vivo. In summary, the capacity for angiogenesis in endothelial cells could be enhanced by PF treatment via the PI3K/AKT pathway in vitro and could accelerate the wound healing process in vivo through collagen deposition and angiogenesis in regenerated tissue. This study provides evidence that application of PF represents a novel therapeutic approach for the treatment of cutaneous wounds.


Asunto(s)
Glucósidos/farmacología , Monoterpenos/farmacología , Neovascularización Fisiológica/genética , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Regeneración/efectos de los fármacos , Regeneración/genética , Transducción de Señal/efectos de los fármacos , Piel/lesiones , Piel/patología
5.
Biochem Biophys Res Commun ; 458(1): 98-103, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25640843

RESUMEN

ß-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without ß-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the ß-glucan group. Dietary ß-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary ß-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary ß-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota.


Asunto(s)
Genes MHC Clase II/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Stichopus , beta-Glucanos/farmacología , Alimentación Animal , Animales , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Intestinos/efectos de los fármacos , Microbiota/efectos de los fármacos , Rhodobacteraceae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA