Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicology ; 32(10): 1221-1232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38032393

RESUMEN

The phytotoxicity of invasive plants (IPS) has been identified as one of the main factors influencing their invasion success. The invasion of IPS can occur to varying degrees in the habitats. Two IPS can invade one habitat. This study aimed to evaluate the mono- and co-phytotoxicity of two Asteraceae IPS Solidago canadensis L. and Bidens pilosa L. with different invasion degrees (including light invasion (relative abundance <50%) and heavy invasion (relative abundance ≥50%)) on the horticultural Asteraceae species Lactuca sativa L., through a hydroponic experiment conducted on 9 cm Petri dishes. Leaf extracts of the two IPS can cause significant mono- and co-phytotoxicity. The mono- and co-phytotoxicity of the two IPS were concentration-dependent. The mono-phytotoxicity of S. canadensis was significantly increased with increasing invasion degree, but the opposite was true for the mono-phytotoxicity of B. pilosa. Leaf extracts of B. pilosa with light invasion caused stronger phytotoxicity than those of S. canadensis with light invasion. There may be an antagonistic effect for the co-phytotoxicity caused by mixed leaf extracts of the two IPS compared with those of either S. canadensis or B. pilosa. The phytotoxicity of the two IPS on the growth performance of neighboring plants may play a more important role in their mono-invasion than in their co-invasion. The phytotoxicity appeared to affect the growth performance of S. canadensis individuals more significantly when the invasion was heavy, while the growth performance of B. pilosa individuals seemed to be more influenced by phytotoxicity when the invasion was light. Consequently, the concentration of leaf extracts of IPS, the invasion degree of IPS, the species identity of IPS, and the species number of IPS modulated the mono- and co-phytotoxicity of the two IPS.


Asunto(s)
Asteraceae , Bidens , Solidago , Humanos , Especies Introducidas
3.
J Dermatol Sci ; 98(2): 102-108, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32278532

RESUMEN

BACKGROUND: 585 nm light-emitting diodes have been proven to suppress melanogenesis in melanocytes. However, whether LEDs will influence normal human epidermal keratinocytes (NHEKs) and paracrine effect of LEDs-irradiated NHEKs in melanogenesis remains unknown. OBJECTIVE: To elucidate the possible mechanisms in vitro of anti-melanogenic activity of 585 nm LEDs on paracrine effect of NHEKs and its exosomes. METHODS: NHEKs irradiated with different fluences of 585 nm LEDs were evaluated the cell viability by CCK8 assay. Irradiated medium of NHEKs was co-cultured with melanocytes. Melanin content, tyrosinase activity and melanogenic enzymes activities were detected. Exosomes from NHEKs medium were isolated and characterized by electron microscopy and nanoparticle tracking analysis. The expression changes of H19 and its encoded exosomal miR-675 were analyzed. RESULTS: Irradiation with 585 nm LEDs from 0 J/cm2 to 20 J/cm2 had no cytotoxic effect on NHEKs. After co-cultured with irradiated medium of NHEKs, melanin content and tyrosinase activity were reduced and the melanogenic activities were downregulated on both mRNA and protein levels of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1). H19 and its derived exosomal miR-675 from NHEKs, which has been proven relevant to melanogenesis, were significantly upregulated after irradiation. Furthermore, H19 knockdown and miR-675 inhibition in NHEKs could attenuate the inhibition effect of 585 nm LEDs on melanogenesis. CONCLUSIONS: This study demonstrated that 585 nm LEDs could inhibit melanogenesis via the up-regulation of H19 and its derived exosomal miR-675 from NHEKs, which was considered as a novel paracrine factor in regulating melanogenesis.


Asunto(s)
Hiperpigmentación/terapia , Terapia por Luz de Baja Intensidad/instrumentación , Melaninas/biosíntesis , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Exosomas/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Hiperpigmentación/genética , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Melanocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , MicroARNs/antagonistas & inhibidores , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Comunicación Paracrina/genética , Comunicación Paracrina/efectos de la radiación , Cultivo Primario de Células , ARN Largo no Codificante/genética , Semiconductores , Regulación hacia Arriba/genética , Regulación hacia Arriba/efectos de la radiación
4.
J Dermatol Sci ; 89(1): 11-18, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29065997

RESUMEN

BACKGROUND: Melasma is a common hyperpigmentation skin disease on face. Light-emitting diode (LED) photomodulation (585nm) is reported to be effective for the treatment of melasma. However, whether and how LED photomodulation would influence melanogenesis of human epidermal melanocytes (HEMs) is unknown. OBJECTIVE: To evaluate the effects of LED photomodulation (585nm) on melanogenesis in HEMs. METHODS: HEMs were irradiated with fluences of 0, 5, 10 and 20J/cm2 585nm LED light. After 5-day treatment, cell viability was analyzed by CCK-8 assay, and apoptosis was assessed by Annexin V APC assay. Melanin content and tyrosinase activity were measured by spectrophotometer. Melanosome stage and autophagosomes were determined under transmission electron microscope (TEM). The formation of autophagic punctate structures was observed under confocal microscope. RT-PCR and western blotting were used to assess the expression of relative mRNA and protein levels. RESULTS: Yellow light LED 585nm had no effects on HEMs cell viability and apoptosis. Treatment with LED 585nm from 5J/cm2 to 20J/cm2 inhibited melanosome maturation, decreased melanin content and tyrosinase activity. Inhibition was accompanied by the decreased expression of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1) and microphthalmia-associated transcription factor (MITF) on both mRNA and protein levels. Autophagosomes were observed under TEM. Autophagic punctate structures of microtubule-associated protein light chain 3 (LC3) proteins were induced by LED 585nm light. The configuration change of LC3 from LC3-I to LC3-II, and the degradation of p62 protein were observed after LED 585nm. Furthermore, we also revealed that the anti-melanogenic effect of LED 585nm photomodulation was reversed by 3-Methyladenine (3-MA), which inhibits autophagy by blocking autophagosome formation via the inhibition of type III Phosphatidylinositol 3-kinases (PI-3K). CONCLUSIONS: Our finding demonstrated that LED photomodulation with 585nm wavelength suppressed melanin content in HEMs, and the effect was caused by its dose-dependent inhibition on melanogenesis and the induction of HEMs autophagy. This may provide new insights into the efficacy of LED photomodulation in the treatment of hyperpigmentation disorders.


Asunto(s)
Autofagia/efectos de la radiación , Melaninas/biosíntesis , Melanocitos/efectos de la radiación , Melanosis/terapia , Fototerapia/métodos , Adenina/análogos & derivados , Adenina/farmacología , Autofagia/efectos de los fármacos , Células Cultivadas , Células Epidérmicas , Epidermis/efectos de la radiación , Humanos , Melaninas/efectos de la radiación , Melanocitos/metabolismo , Melanocitos/ultraestructura , Glicoproteínas de Membrana/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microscopía Electrónica de Transmisión , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Cultivo Primario de Células
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA