Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Pathog ; 189: 106573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354989

RESUMEN

The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.


Asunto(s)
Antiinfecciosos , Medicina Tradicional China , Animales , Humanos , Permeabilidad de la Membrana Celular , Biopelículas , Candida albicans , Antiinfecciosos/farmacología , Mezclas Complejas/farmacología , Permeabilidad , Pruebas de Sensibilidad Microbiana , Mamíferos
2.
BMC Gastroenterol ; 23(1): 359, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853349

RESUMEN

BACKGROUND: Helicobacter pylori (HP) infection is associated with various diseases. Early detection can prevent the onset of illness. We constructed a nomogram to predict groups at high risk of HP infection. METHODS: Patients who underwent regular medical check-ups at hospital in Chaoshan, China from March to September 2022 were randomly allocated to the training and validation cohorts. Risk factors including basic characteristics and lifestyle habits associated with HP infection were analyzed by logistic regression analyses. The independent varieties were calculated and plotted into a nomogram. The nomogram was internally validated by receiver operating characteristic curve, calibration, and decision curve analyses (DCAs). RESULTS: Of the 945 patients, 680 were included in the training cohort and 265 in the validation cohort. 356 patients in training cohort with positive 13 C-UBT results served as the infected group, and 324 without infection were the control group. The multivariate regression analyses showed that the risk factors for HP infection included alcohol consumption (OR = 1.29, 95%CI = 0.78-2.13, P = 0.03), family history of gastric disease (OR = 4.35, 95%CI = 1.47-12.84, P = 0.01), living with an HP-positive individual (OR = 18.09, 95%CI = 10.29-31.82, P < 0.0001), drinking hot tea (OR = 1.58, 95%CI = 1.05-2.48, P = 0.04), and infection status of co-drinkers unknown (OR = 2.29, 95%CI = 1.04-5.06, P = 0.04). However, drinking tea > 3 times per day (OR = 0.56, 95%CI = 0.33-0.95, P = 0.03), using serving chopsticks (OR = 0.30, 95%CI = 0.12-0.49, P < 0.0001) were protective factors for HP infection. The nomogram had an area under the curve (AUC) of 0.85 in the training cohort. The DCA was above the reference line within a large threshold range, indicating that the model was better. The calibration analyses showed the actual occurrence rate was basically consistent with the predicted occurrence rate. The model was validated in the validation cohort, and had a good AUC (0.80), DCA and calibration curve results. CONCLUSIONS: This nomogram, which incorporates basic characteristics and lifestyle habits, is an efficient model for predicting those at high risk of HP infection in the Chaoshan region.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , China/epidemiología , Infecciones por Helicobacter/epidemiología , Estilo de Vida , Nomogramas ,
3.
Plant Physiol Biochem ; 196: 444-453, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36758291

RESUMEN

The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glycine max/fisiología , Resistencia a la Sequía , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grano Comestible/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Sequías , Aceites de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Biochem Pharmacol ; 150: 150-159, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29427627

RESUMEN

Although repression of inflammatory gene expression makes glucocorticoids (GCs) powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. It has been postulated that the anti-inflammatory effects of GCs are primarily mediated by GR's activity in transrepressing major inflammation pathways such as NF-κB pathway, whereas their side effects are mostly mediated by GR's transactivation. In this study, we found that Caesalpinin M2 (C-M2), a cassane furanoditerpene isolated from a Chinese medical plant, exerts an anti-inflammatory potential both in vitro and in vivo. C-M2 inhibited the expression of proinflammatory cytokine IL-1ß and IL-6 in LPS-activated bone marrow-derived macrophages. Meanwhile, C-M2 treatment attenuated DSS-induced experimental acute colitis in mice and did not cause side effects, such as spleen involution, like dexamethasone treatment. Molecular docking and cellular thermal shift assay demonstrated that C-M2 could bind to GR in the ligand binding site. We showed that C-M2 mediates gene-inhibitory effects by activating GR. More importantly, C-M2 failed to induce GR binding to glucocorticoid response element-dependent genes and in turn activate their transcription. But it did repress NF-κB-dependent transcription by facilitating the interaction between GR and p65. Taken together, this non-steroidal compound of plant origin may exert anti-inflammatory actions as a selective GR modulator and might hold great potential for therapeutic use in inflammatory diseases.


Asunto(s)
Antiinflamatorios/farmacología , Caesalpinia , Colitis/tratamiento farmacológico , Mediadores de Inflamación/antagonistas & inhibidores , Extractos Vegetales/farmacología , Receptores de Glucocorticoides/fisiología , Células A549 , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Colitis/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular/métodos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Receptores de Glucocorticoides/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA