Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(13): 19123-19147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379040

RESUMEN

The sustainable synthesis of zinc oxide nanoparticles (ZnO-NPs) using plant extracts has gained significant attention in recent years due to its eco-friendly nature and potential applications in numerous fields. This synthetic approach reduces the reliance on non-renewable resources and eliminates the need for hazardous chemicals, minimizing environmental pollution and human health risks. These ZnO-NPs can be used in environmental remediation applications, such as wastewater treatment or soil remediation, effectively removing pollutants and improving overall ecosystem health. These NPs possess a high surface area and band gap of 3.2 eV, can produce both OH° (hydroxide) and O2-° (superoxide) radicals for the generation of holes (h+) and electrons (e-), resulting in oxidation and reduction of the pollutants in their valence band (VB) and conduction band (CB) resulting in degradation of dyes (95-100% degradation of MB, MO, and RhB dyes), reduction and removal of heavy metal ions (Cu2+, Pb2+, Cr6+, etc.), degradation of pharmaceutical compounds (paracetamol, urea, fluoroquinolone (ciprofloxacin)) using photocatalysis. Here, we review an overview of various plant extracts used for the green synthesis of ZnO NPs and their potential applications in environmental remediation including photocatalysis, adsorption, and heavy metal remediation. This review summarizes the most recent studies and further research perspectives to explore their applications in various fields.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanopartículas del Metal , Metales Pesados , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/química , Ecosistema , Nanopartículas/química , Colorantes/química , Extractos Vegetales/química , Nanopartículas del Metal/química , Antibacterianos
2.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32064529

RESUMEN

Pigs exposed to heat stress (HS) increase body temperature in which can damage the intestinal epithelia and affect the absorption and availability of amino acids (AA). Protein digestion and metabolism further increase body temperature. An experiment was conducted with six pairs of pigs (of 47.3 ± 1.3 kg initial body weight) exposed to natural HS to assess the effect of substituting dietary protein-bound AA by free AA on morphology and gene expression of intestinal epithelial and serum concentration (SC) of free AA. Treatments were: high protein, 21.9% crude protein (CP) diet (HShp) and low protein, 13.5% CP diet supplemented with crystalline Lys, Thr, Met, Trp, His, Ile, Leu, Phe, and Val (HSaa). The HShp diet met or exceeded all AA requirements. The HSaa diet was formulated on the basis of ideal protein. Pigs were fed the same amount at 0700 and 1900 hours during the 21-d study. Blood samples were collected at 1700 hours (2.0 h before the evening meal), 2030 hours, and 2130 hours (1.5 and 2.5 h after the evening meal). At the end, all pigs were sacrificed to collect intestinal mucosa and a 5-cm section from each segment of the small intestine from each pig. Villi measures, expression of AA transporters (y+L and B0) in mucosa, and SC of AA were analyzed. Ambient temperature fluctuated daily from 24.5 to 42.6 °C. Weight gain and G.F were not affected by dietary treatment. Villi height tended to be larger (P ≤ 0.10) and the villi height:crypt depth ratio was higher in duodenum and jejunum of pigs fed the HSaa diet (P < 0.05). Gene expression of transporter y+L in jejunum tended to be lower (P < 0.10) and transporter B0 in the ileum was lower (P < 0.05) in HSaa pigs. Preprandial (1700 hours) SC of Arg, His, Ile, Leu, Thr, Trp, and Val was higher (P < 0.05), and Phe tended to be higher (P < 0.10) in HShp pigs. At 2030 hours (1.5 h postprandial), serum Lys, Met, and Thr were higher in the HSaa pigs (P < 0.05). At 2130 hours (2.5 h), Arg, His, Ile, Phe, and Trp were lower (P < 0.05); Met was higher (P < 0.05); and Lys tended to be higher (P < 0.10) in HSaa pigs. In conclusion, feeding HS pigs with low protein diets supplemented with free AA reduces the damage of the intestinal epithelia and seems to improve its absorption capacity, in comparison with HS pigs fed diets containing solely protein-bound AA. This information is useful to formulate diets that correct the reduced AA consumption associated with the decreased voluntary feed intake of pigs under HS.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico/fisiología , Mucosa Intestinal/efectos de los fármacos , Enfermedades de los Porcinos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Suplementos Dietéticos , Trastornos de Estrés por Calor/metabolismo , Mucosa Intestinal/metabolismo , Porcinos , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA