Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plants (Basel) ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904011

RESUMEN

This study aimed to increase the therapeutic potential of medicinal plants through inoculation with endophytic fungi. As endophytes influence medicinal plants' biological properties, twenty fungal strains were isolated from the medicinal plant Ocimum tenuiflorum. Among all fungal isolates, the R2 strain showed the highest antagonistic activity towards plant pathogenic fungi Rosellinia necatrix and Fusarium oxysporum. The partial ITS region of the R2 strain was deposited in the GenBank nucleotide sequence databases under accession number ON652311 as Fusarium fujikuroi isolate R2 OS. To ascertain the impact of an endophytic fungus on the biological functions of medicinal plants, Stevia rebaudiana seeds were inoculated with Fusarium fujikuroi (ON652311). In the DPPH assay, the IC50 value of the inoculated Stevia plant extracts (methanol, chloroform, and positive control) was 72.082 µg/mL, 85.78 µg/mL, and 18.86 µg/mL, respectively. In the FRAP assay, the IC50 value of the inoculated Stevia extracts (methanol, chloroform extract, and positive control) was 97.064 µM Fe2+ equivalents, 117.662 µM Fe2+ equivalents, and 53.384 µM Fe2+ equivalents, respectively. In the extracts of the plant inoculated with endophytic fungus, rutin and syringic acid (polyphenols) concentrations were 20.8793 mg/L and 5.4389 mg/L, respectively, which were higher than in the control plant extracts. This approach can be further utilized for other medicinal plants to increase their phytochemical content and hence medicinal potential in a sustainable way.

2.
Food Chem ; 404(Pt B): 134571, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36323010

RESUMEN

Freeze drying (FD) is an important and highly effective technology in food industry for retaining the quality in final dried product. This drying technique is performed at lower temperatures, restricting the damage suffered by thermally sensitive ingredients. However, FD consumes large amount of energy and required more time than conventional drying methods. The utilization of ultrasonic technology (US) as pre-treatment before FD represents a promising alternative in accelerating the drying process, decreases energy consumption and maintaining quality as compared to the non pre-treated sample. This review summarizes research progress and current studies in ultrasonic as pre-treatment for freeze drying (US + FD) technique. The impact of US + FD on phytochemical, color, texture and micro-structure of food are well summarized. The review also suggests that the optimised US treatment parameters are required to improve heat and mass transfer in food samples which help in speed up the drying process and reduction of drying time.


Asunto(s)
Desecación , Manipulación de Alimentos , Liofilización/métodos , Desecación/métodos , Manipulación de Alimentos/métodos , Fitoquímicos , Suplementos Dietéticos
3.
J Drug Deliv Sci Technol ; 74: 103430, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35582019

RESUMEN

The current COVID-19 epidemic is a sobering reminder that human susceptibility to infectious diseases remains even in our modern civilization. After all, infectious diseases are still the major reason of death globally. Healthcare authorities have often underestimated and ignored the threat posed by "microbial dangers," although they put millions of lives at risk every year. Overlooked developing diseases including fungal infections (FIs) contribute to roughly 1.7 million fatalities per year. As many as 150 million cases of severe and potentially life-threatening FIs are reported each year. In the last few years, the number of instances has steadily increased. Most of them are invasive fungal infections that require specialized treatment and hospital care. In recent years herbal antifungal compounds have been explored to acquire effective and safe therapy against fungal infections. However, potential therapeutic effects are hampered by the poor solubility, stability, and bioavailability of these important chemicals as well as the gastric degradation that occurs in the gastrointestinal tract. To get around this issue, researchers have turned to novel drug delivery systems such as nanoemulsions, ethosomes, metallic nanoparticles, liposomes, lipid nanoparticles, transferosomes, etc by improving their limits, nanocarriers can enhance the medicinal effects of herbal oils and extracts. The present review article focuses on the available antifungal agents and their characteristics, mechanism of antifungal drugs resistance, herbal oils and extract as antifungal agents, challenges in the delivery of herbal drugs, and application of nano-drug delivery systems for effective delivery of antifungal herbal compounds.

4.
Biosensors (Basel) ; 9(2)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195725

RESUMEN

Dielectrophoresis (DEP) is a nondestructive and noninvasive method which is favorable for point-of-care medical diagnostic tests. This technique exhibits prominent relevance in a wide range of medical applications wherein the miniaturized platform for manipulation (immobilization, separation or rotation), and detection of biological particles (cells or molecules) can be conducted. DEP can be performed using advanced planar technologies, such as complementary metal-oxide-semiconductor (CMOS) through interdigitated capacitive biosensors. The dielectrophoretically immobilization of micron and submicron size particles using interdigitated electrode (IDE) arrays is studied by finite element simulations. The CMOS compatible IDEs have been placed into the silicon microfluidic channel. A rigorous study of the DEP force actuation, the IDE's geometrical structure, and the fluid dynamics are crucial for enabling the complete platform for CMOS integrated microfluidics and detection of micron and submicron-sized particle ranges. The design of the IDEs is performed by robust finite element analyses to avoid time-consuming and costly fabrication processes. To analyze the preliminary microfluidic test vehicle, simulations were first performed with non-biological particles. To produce DEP force, an AC field in the range of 1 to 5 V (peak-to-peak) is applied to the IDE. The impact of the effective external and internal properties, such as actuating DEP frequency and voltage, fluid flow velocity, and IDE's geometrical parameters are investigated. The IDE based system will be used to immobilize and sense particles simultaneously while flowing through the microfluidic channel. The sensed particles will be detected using the capacitive sensing feature of the biosensor. The sensing and detecting of the particles are not in the scope of this paper and will be described in details elsewhere. However, to provide a complete overview of this system, the working principles of the sensor, the readout detection circuit, and the integration process of the silicon microfluidic channel are briefly discussed.


Asunto(s)
Técnicas Biosensibles/instrumentación , Electroforesis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Semiconductores , Animales , Electrodos , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Dispositivos Laboratorio en un Chip , Metales/química , Óxidos/química , Tamaño de la Partícula
5.
J Biol Chem ; 293(43): 16623-16634, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30217815

RESUMEN

Human cytochrome P450 enzymes are membrane-bound heme-containing monooxygenases. As is the case for many heme-containing enzymes, substitution of the metal in the center of the heme can be useful for mechanistic and structural studies of P450 enzymes. For many heme proteins, the iron protoporphyrin prosthetic group can be extracted and replaced with protoporphyrin containing another metal, but human membrane P450 enzymes are not stable enough for this approach. The method reported herein was developed to endogenously produce human membrane P450 proteins with a nonnative metal in the heme. This approach involved coexpression of the P450 of interest, a heme uptake system, and a chaperone in Escherichia coli growing in iron-depleted minimal medium supplemented with the desired trans-metallated protoporphyrin. Using the steroidogenic P450 enzymes CYP17A1 and CYP21A2 and the drug-metabolizing CYP3A4, we demonstrate that this approach can be used with several human P450 enzymes and several different metals, resulting in fully folded proteins appropriate for mechanistic, functional, and structural studies including solution NMR.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Metaloporfirinas/metabolismo , Metales/metabolismo , Protoporfirinas/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , Esteroide 21-Hidroxilasa/metabolismo , Citocromo P-450 CYP3A/química , Humanos , Metaloporfirinas/química , Pliegue de Proteína , Protoporfirinas/química , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 21-Hidroxilasa/química
6.
Mol Cell Endocrinol ; 441: 68-75, 2017 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-27566228

RESUMEN

Cytochrome P450 17A1 (CYP17A1) operates at the core of human steroidogenesis, directing precursors into mineralocorticoids, glucocorticoids, or sex steroids. Although the 17α-hydroxylase and 17,20-lyase activities of this dual function enzyme have been investigated extensively, until recently no CYP17A1 structures were available to inform our understanding. Structures of CYP17A1 with a range of steroidal inhibitors and substrates are now available. This review relates functional knowledge of this enzyme to structural features defining the selective differentiation between its various substrates. While both hydroxylase and lyase substrates have similar orientations with respect to the heme, subtle differences in hydrogen bonding between CYP17A1 and the C3 substituent at the opposite end of ligands appear to correlate with differential substrate utilization and product formation. Complementary structural information from solution NMR supports cytochrome b5 allosteric modulation of the lyase reaction, implicating regions involved in ligand access to the otherwise buried active site.


Asunto(s)
Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/metabolismo , Animales , Humanos , Hidroxilación , Pregnenolona/metabolismo , Progesterona/metabolismo , Estereoisomerismo , Especificidad por Sustrato
7.
J Am Heart Assoc ; 4(9): e001508, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26374297

RESUMEN

BACKGROUND: The aim of this study was to explore the influence of extended-release niacin/laropiprant (ERN/LRP) versus placebo on high-density lipoprotein (HDL) antioxidant function, cholesterol efflux, apolipoprotein B100 (apoB)-containing lipoproteins, and mediators of vascular inflammation associated with 15% increase in high-density lipoprotein cholesterol (HDL-C). Study patients had persistent dyslipidemia despite receiving high-dose statin treatment. METHODS AND RESULTS: In a randomized double-blind, placebo-controlled, crossover trial, we compared the effect of ERN/LRP with placebo in 27 statin-treated dyslipidemic patients who had not achieved National Cholesterol Education Program-ATP III targets for low-density lipoprotein cholesterol (LDL-C). We measured fasting lipid profile, apolipoproteins, cholesteryl ester transfer protein (CETP) activity, paraoxonase 1 (PON1) activity, small dense LDL apoB (sdLDL-apoB), oxidized LDL (oxLDL), glycated apoB (glyc-apoB), lipoprotein phospholipase A2 (Lp-PLA2), lysophosphatidyl choline (lyso-PC), macrophage chemoattractant protein (MCP1), serum amyloid A (SAA) and myeloperoxidase (MPO). We also examined the capacity of HDL to protect LDL from in vitro oxidation and the percentage cholesterol efflux mediated by apoB depleted serum. ERN/LRP was associated with an 18% increase in HDL-C levels compared to placebo (1.55 versus 1.31 mmol/L, P<0.0001). There were significant reductions in total cholesterol, triglycerides, LDL cholesterol, total serum apoB, lipoprotein (a), CETP activity, oxLDL, Lp-PLA2, lyso-PC, MCP1, and SAA, but no significant changes in glyc-apoB or sdLDL-apoB concentration. There was a modest increase in cholesterol efflux function of HDL (19.5%, P=0.045), but no change in the antioxidant capacity of HDL in vitro or PON1 activity. CONCLUSIONS: ERN/LRP reduces LDL-associated mediators of vascular inflammation, but has varied effects on HDL functionality and LDL quality, which may counter its HDL-C-raising effect. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01054508.


Asunto(s)
HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dislipidemias/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Indoles/uso terapéutico , Mediadores de Inflamación/sangre , Niacina/uso terapéutico , Adulto , Anciano , Apolipoproteína B-100/sangre , Biomarcadores/sangre , Estudios Cruzados , Preparaciones de Acción Retardada , Método Doble Ciego , Combinación de Medicamentos , Dislipidemias/sangre , Dislipidemias/diagnóstico , Inglaterra , Femenino , Humanos , Lipoproteínas LDL/sangre , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA