Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
2.
Acta Virol ; 67(1): 13-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950882

RESUMEN

High-throughput RNA sequencing (RNA-seq) analysis of samples from Mallotus japonicus, a traditional medicinal plant, yielded two novel RNA viruses tentatively named Mallotus japonicus virus A (MjVA) and Mallotus japonicus virus B (MjVB). The MjVA and MjVB genomes encode proteins showing amino acid sequence similarities to those of poleroviruses (the genus Polerovirus, the family Solemoviridae) and amalgaviruses (the genus Amalgavirus, the family Amalgaviridae), respectively. The MjVA genome contains seven highly overlapping open reading frames, which are translated to seven proteins through various translational mechanisms, including -1 programmed ribosomal frameshifting (PRF) at the slippery motif GGGAAAC, non-AUG translational initiation, and stop codon readthrough. The MjVB genome encodes two proteins; one of which is translated by +1 PRF mechanism at the slippery motif UUUCGN. The abundance analysis of virus-derived RNA fragments revealed that MjVA is highly concentrated in plant parts with well-developed phloem tissues as previously demonstrated in other poleroviruses, which are transmitted by phloem feeders, such as aphids. MjVB, an amalgavirus generally transmitted by seeds, is distributed in all samples at low concentrations. Thus, this study demonstrates the effectiveness and usefulness of RNA-seq analysis of plant samples for the identification of novel RNA viruses and analysis of their tissue distribution. Keywords: Polerovirus; Amalgavirus; Mallotus japonicus; RNA virus; viral genome; programmed ribosomal frameshifting.


Asunto(s)
Luteoviridae , Mallotus (Planta) , Virus ARN , Luteoviridae/genética , Mallotus (Planta)/genética , Filogenia , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Genoma Viral , Enfermedades de las Plantas
3.
Plant Cell Physiol ; 64(1): 64-79, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36218384

RESUMEN

White Kwao Krua (Pueraria candollei var. mirifica), a Thai medicinal plant, is a rich source of phytoestrogens, especially isoflavonoids and chromenes. These phytoestrogens are well known; however, their biosynthetic genes remain largely uncharacterized. Cytochrome P450 (P450) is a large protein family that plays a crucial role in the biosynthesis of various compounds in plants, including phytoestrogens. Thus, we focused on P450s involved in the isoflavone hydroxylation that potentially participates in the biosynthesis of miroestrol. Three candidate P450s were isolated from the transcriptome libraries by considering the phylogenetic and expression data of each tissue of P. mirifica. The candidate P450s were functionally characterized both in vitro and in planta. Accordingly, the yeast microsome harboring PmCYP81E63 regiospecifically exhibited either 2' or 3' daidzein hydroxylation and genistein hydroxylation. Based on in silico calculation, PmCYP81E63 had higher binding energy with daidzein than with genistein, which supported the in vitro result of the isoflavone specificity. To confirm in planta function, the candidate P450s were then transiently co-expressed with isoflavone-related genes in Nicotiana benthamiana. Despite no daidzein in the infiltrated N. benthamiana leaves, genistein and hydroxygenistein biosynthesis were detectable by liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Additionally, we demonstrated that PmCYP81E63 interacted with several enzymes related to isoflavone biosynthesis using bimolecular fluorescence complementation studies and a yeast two-hybrid analysis, suggesting a scheme of metabolon formation in the pathway. Our findings provide compelling evidence regarding the involvement of PmCYP81E63 in the early step of the proposed miroestrol biosynthesis in P. mirifica.


Asunto(s)
Isoflavonas , Pueraria , Fitoestrógenos , Pueraria/química , Pueraria/genética , Pueraria/metabolismo , Cromatografía Liquida , Hidroxilación , Genisteína , Filogenia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas en Tándem , Isoflavonas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
4.
Plant Biotechnol (Tokyo) ; 39(3): 281-289, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36349240

RESUMEN

Marasmin [S-(methylthiomethyl)-L-cysteine-4-oxide] is a pharmaceutically valuable sulfur-containing compound produced by the traditional medicinal plant, Tulbaghia violacea. Here, we report the identification of an S-oxygenase, TvMAS1, that produces marasmin from its corresponding sulfide, S-(methylthiomethyl)-L-cysteine. The amino acid sequence of TvMAS1 showed high sequence similarity to known flavin-containing S-oxygenating monooxygenases in plants. Recombinant TvMAS1 catalyzed regiospecific S-oxygenation at S4 of S-(methylthiomethyl)-L-cysteine to yield marasmin, with an apparent K m value of 0.55 mM. TvMAS1 mRNA accumulated with S-(methylthiomethyl)-L-cysteine and marasmin in various organs of T. violacea. Our findings suggest that TvMAS1 catalyzes the S-oxygenation reaction during the last step of marasmin biosynthesis in T. violacea.

5.
J Nat Med ; 76(4): 803-810, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35691991

RESUMEN

S-Alk(en)ylcysteine sulfoxides (CSOs), such as methiin, alliin, and isoalliin, are health-beneficial natural products biosynthesized in the genus Allium. Here, we report the induction of multiple callus tissue lines from three Allium vegetables, onion (A. cepa), Welsh onion (A. fistulosum), and Chinese chive (A. tuberosum), and their ability to accumulate CSOs. Callus tissues were initiated and maintained in the presence of picloram and 2-isopentenyladenine as auxin and cytokinin, respectively. For all plant species tested, the callus tissues almost exclusively accumulated methiin as CSO, while the intact plants contained a substantial amount of isoalliin together with methiin. These results suggest that the cellular developmental conditions and the regulatory mechanisms required for the biosynthesis of methiin are different from those of alliin and isoalliin. The methiin content in the callus tissues of onion and Welsh onion was much higher compared to that in the intact plants, and its cellular concentration could be estimated as 1.9-21.7 mM. The activity of alliinase that degrades CSOs in the callus tissues was much lower than that of the intact plants for onion and Welsh onion, but at similar levels as in the intact plants for Chinese chive. Our findings that the callus tissues of onion and Welsh onion showed high methiin content and low alliinase activity highlighted their potential as a plant-based system for methiin production.


Asunto(s)
Allium , Productos Biológicos , Cebollas/metabolismo , Sulfóxidos
6.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445541

RESUMEN

Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Mallotus (Planta)/metabolismo , Metaboloma , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Mallotus (Planta)/genética , Mallotus (Planta)/crecimiento & desarrollo , Especificidad de Órganos , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
7.
Nat Commun ; 12(1): 405, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452249

RESUMEN

Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes' evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.


Asunto(s)
Camptotecina/biosíntesis , Evolución Molecular , Genoma de Planta/genética , Proteínas de Plantas/genética , Rubiaceae/metabolismo , Vías Biosintéticas/genética , Cromosomas de las Plantas/genética , Mapeo Contig , Genómica , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Rubiaceae/genética , Alcaloides de la Vinca/biosíntesis
8.
DNA Res ; 27(2)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32426807

RESUMEN

Cornus officinalis, an important traditional medicinal plant, is used as major constituents of tonics, analgesics, and diuretics. While several studies have focused on its characteristic bioactive compounds, little is known on their biosynthesis. In this study, we performed LC-QTOF-MS-based metabolome and RNA-seq-based transcriptome profiling for seven tissues of C. officinalis. Untargeted metabolome analysis assigned chemical identities to 1,215 metabolites and showed tissue-specific accumulation for specialized metabolites with medicinal properties. De novo transcriptome assembly established for C. officinalis showed 96% of transcriptome completeness. Co-expression analysis identified candidate genes involved in the biosynthesis of iridoids, triterpenoids, and gallotannins, the major group of bioactive metabolites identified in C. officinalis. Integrative omics analysis identified 45 cytochrome P450s genes correlated with iridoids accumulation in C. officinalis. Network-based integration of genes assigned to iridoids biosynthesis pathways with these candidate CYPs further identified seven promising CYPs associated with iridoids' metabolism. This study provides a valuable resource for further investigation of specialized metabolites' biosynthesis in C. officinalis.


Asunto(s)
Cornus/genética , Metaboloma , Transcriptoma , Cornus/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Genómica/métodos , Taninos Hidrolizables/metabolismo , Iridoides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo
9.
BMC Plant Biol ; 19(1): 581, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31878891

RESUMEN

BACKGROUND: Pueraria candollei var. mirifica, a Thai medicinal plant used traditionally as a rejuvenating herb, is known as a rich source of phytoestrogens, including isoflavonoids and the highly estrogenic miroestrol and deoxymiroestrol. Although these active constituents in P. candollei var. mirifica have been known for some time, actual knowledge regarding their biosynthetic genes remains unknown. RESULTS: Miroestrol biosynthesis was reconsidered and the most plausible mechanism starting from the isoflavonoid daidzein was proposed. A de novo transcriptome analysis was conducted using combined P. candollei var. mirifica tissues of young leaves, mature leaves, tuberous cortices, and cortex-excised tubers. A total of 166,923 contigs was assembled for functional annotation using protein databases and as a library for identification of genes that are potentially involved in the biosynthesis of isoflavonoids and miroestrol. Twenty-one differentially expressed genes from four separate libraries were identified as candidates involved in these biosynthetic pathways, and their respective expressions were validated by quantitative real-time reverse transcription polymerase chain reaction. Notably, isoflavonoid and miroestrol profiling generated by LC-MS/MS was positively correlated with expression levels of isoflavonoid biosynthetic genes across the four types of tissues. Moreover, we identified R2R3 MYB transcription factors that may be involved in the regulation of isoflavonoid biosynthesis in P. candollei var. mirifica. To confirm the function of a key-isoflavone biosynthetic gene, P. candollei var. mirifica isoflavone synthase identified in our library was transiently co-expressed with an Arabidopsis MYB12 transcription factor (AtMYB12) in Nicotiana benthamiana leaves. Remarkably, the combined expression of these proteins led to the production of the isoflavone genistein. CONCLUSIONS: Our results provide compelling evidence regarding the integration of transcriptome and metabolome as a powerful tool for identifying biosynthetic genes and transcription factors possibly involved in the isoflavonoid and miroestrol biosyntheses in P. candollei var. mirifica.


Asunto(s)
Isoflavonas/biosíntesis , Pueraria/genética , Esteroides/biosíntesis , Transcriptoma , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Isoflavonas/genética , Fitoestrógenos/metabolismo , Pueraria/metabolismo
10.
New Phytol ; 224(2): 848-859, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31436868

RESUMEN

Catharanthus roseus is a medicinal plant well known for producing bioactive compounds such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). Although the leaves of this plant are the main source of these antitumour drugs, much remains unknown on how TIAs are biosynthesised from a central precursor, strictosidine, to various TIAs in planta. Here, we have succeeded in showing, for the first time in leaf tissue of C. roseus, cell-specific TIAs localisation and accumulation with 10 µm spatial resolution Imaging mass spectrometry (Imaging MS) and live single-cell mass spectrometry (single-cell MS). These metabolomic studies revealed that most TIA precursors (iridoids) are localised in the epidermal cells, but major TIAs including serpentine and vindoline are localised instead in idioblast cells. Interestingly, the central TIA intermediate strictosidine also accumulates in both epidermal and idioblast cells of C. roseus. Moreover, we also found that vindoline accumulation increases in laticifer cells as the leaf expands. These discoveries highlight the complexity of intercellular localisation in plant specialised metabolism.


Asunto(s)
Catharanthus/citología , Catharanthus/metabolismo , Metabolómica , Hojas de la Planta/citología , Alcaloides de Triptamina Secologanina/metabolismo , Técnicas de Cultivo de Célula , Análisis de Componente Principal
11.
J Nat Med ; 73(2): 369-380, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30547286

RESUMEN

Gleditsia sinensis is widely used as a medicinal plant in Asia, especially in China. Triterpenes, alkaloids, and sterols were isolated from Gleditsia species. Among them, triterpenoid saponins are very important metabolites owing to their various pharmacological activities. However, the triterpenoid saponin biosynthesis pathway has not been well characterized. In the present study, we performed de novo transcriptome assembly for 14.3 Gbps of clean reads sequenced from nine tissues of G. sinensis. The results showed that 81,511 unique transcripts (unitranscripts) (47,855 unigenes) were constructed, of which 31,717 unigenes were annotated with Gene Ontology and EC numbers by Blast2GO against the NCBI-nr protein database. We also analyzed the metabolite contents in the same nine tissues by LS-MS/MS, and saponins including gleditsioside I were found in fruit at higher levels. Many of the genes with tissue-specific expression in fruit are involved in the flavonoid biosynthesis pathway, and many of those have UDP-glucosyltransferase (UGT) activity. We constructed a saponin biosynthesis pathway and identified two key enzyme families in the triterpenoid saponin biosynthesis pathway, cytochrome P450 and UDP-glucosyltransferase, that are encoded by 37 unigenes and 77 unigenes, respectively. CYP72A, CYP716A, and CYP88D, which are known as key enzymes for saponin biosynthesis, were also identified among the P450s. Our results provide insight into the secondary metabolite biosynthesis and serve as important resources for future research and cultivation of G. sinensis.


Asunto(s)
Gleditsia/genética , Saponinas/biosíntesis , Transcriptoma , Triterpenos/metabolismo , China , Perfilación de la Expresión Génica , Ontología de Genes , Gleditsia/química , Gleditsia/metabolismo , Metaboloma , Plantas Medicinales/química , Plantas Medicinales/genética , Saponinas/análisis , Saponinas/genética , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem
12.
J Nat Med ; 72(4): 867-881, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29736697

RESUMEN

The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.


Asunto(s)
Forsythia/química , Hojas de la Planta/química , Plantas Medicinales/química , Metabolismo Secundario/genética , Transcriptoma/genética , Plantas Medicinales/genética
13.
Planta Med ; 84(12-13): 920-934, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29843181

RESUMEN

Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale, consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale. Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization.


Asunto(s)
Benzofuranos/metabolismo , Ácido Clorogénico/metabolismo , Depsidos/metabolismo , Lithospermum/genética , Metaboloma , Naftoquinonas/metabolismo , Transcriptoma , Vías Biosintéticas , Ontología de Genes , Lithospermum/química , Lithospermum/metabolismo , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/metabolismo
14.
Molecules ; 22(12)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29206203

RESUMEN

Aconitum carmichaelii is an important medicinal herb used widely in China, Japan, India, Korea, and other Asian countries. While extensive research on the characterization of metabolic extracts of A. carmichaelii has shown accumulation of numerous bioactive metabolites including aconitine and aconitine-type diterpene alkaloids, its biosynthetic pathway remains largely unknown. Biosynthesis of these secondary metabolites is tightly controlled and mostly occurs in a tissue-specific manner; therefore, transcriptome analysis across multiple tissues is an attractive method to identify the molecular components involved for further functional characterization. In order to understand the biosynthesis of secondary metabolites, Illumina-based deep transcriptome profiling and analysis was performed for four tissues (flower, bud, leaf, and root) of A. carmichaelii, resulting in 5.5 Gbps clean RNA-seq reads assembled into 128,183 unigenes. Unigenes annotated as possible rate-determining steps of an aconitine-type biosynthetic pathway were highly expressed in the root, in accordance with previous reports describing the root as the accumulation site for these metabolites. We also identified 21 unigenes annotated as cytochrome P450s and highly expressed in roots, which represent candidate unigenes involved in the diversification of secondary metabolites. Comparative transcriptome analysis of A. carmichaelii with A. heterophyllum identified 20,232 orthogroups, representing 30,633 unigenes of A. carmichaelii, gene ontology enrichment analysis of which revealed essential biological process together with a secondary metabolic process to be highly enriched. Unigenes identified in this study are strong candidates for aconitine-type diterpene alkaloid biosynthesis, and will serve as useful resources for further validation studies.


Asunto(s)
Aconitum/genética , Alcaloides/biosíntesis , Diterpenos/metabolismo , Proteínas de Plantas/genética , Metabolismo Secundario/genética , Transcriptoma , Aconitina/química , Aconitina/aislamiento & purificación , Aconitina/metabolismo , Aconitum/clasificación , Aconitum/metabolismo , Alcaloides/química , Alcaloides/aislamiento & purificación , Diterpenos/química , Diterpenos/aislamiento & purificación , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Medicinales
15.
Plant J ; 90(4): 764-787, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28109168

RESUMEN

Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models.


Asunto(s)
Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Biología de Sistemas/métodos , Genómica/métodos , Familia de Multigenes/genética , Biología Sintética
16.
J Nat Med ; 71(1): 1-15, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27629269

RESUMEN

Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.


Asunto(s)
Ácido Clorogénico/química , Glucósidos/química , Iridoides/metabolismo , Lonicera/química , Luteolina/química , Hojas de la Planta/química , Plantas Medicinales/química , Transcriptoma/genética
17.
Plant Cell Rep ; 35(10): 2091-111, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27378356

RESUMEN

KEY MESSAGE: Here, we report potential transcripts involved in the biosynthesis of therapeutic metabolites in Swertia japonica , the first report of transcriptome assembly, and characterization of the medicinal plant from Swertia genus. Swertia genus, representing over 170 plant species including herbs such as S. chirata, S. hookeri, S. longifolia, S. japonica, among others, have been used as the traditional medicine in China, India, Korea, and Japan for thousands of years. Due to the lack of genomic and transcriptomic resources, little is known about the molecular basis involved in the biosynthesis of characteristic key bioactive metabolites. Here, we performed deep-transcriptome sequencing for the aerial tissues and the roots of S. japonica, generating over 2 billion raw reads with an average length of 101 bps. Using a combined approach of three popular assemblers, de novo transcriptome assembly for S. japonica was obtained, yielding 81,729 unigenes having an average length of 884 bps and N50 value of 1452 bps, of which 46,963 unigenes were annotated based on the sequence similarity against NCBI-nr protein database. Annotation of transcriptome assembly resulted in the identification of putative genes encoding all enzymes from the key therapeutic metabolite biosynthesis pathways. Transcript abundance analysis, gene ontology enrichment analysis, and KEGG pathway enrichment analysis revealed metabolic processes being up-regulated in the aerial tissues with respect to the roots of S. japonica. We also identified 37 unigenes as potential candidates involved in the glycosylation of bioactive metabolites. Being the first report of transcriptome assembly and annotation for any of the Swertia species, this study will be a valuable resource for future investigations on the biosynthetic pathways of therapeutic metabolites and their regulations.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metaboloma/genética , Swertia/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Glucosiltransferasas/metabolismo , Glucósidos Iridoides/química , Glucósidos Iridoides/metabolismo , Iridoides/química , Iridoides/metabolismo , Repeticiones de Microsatélite/genética , Anotación de Secuencia Molecular , Filogenia , Raíces de Plantas/genética , Pironas/química , Pironas/metabolismo , Regulación hacia Arriba/genética
18.
Plant Physiol ; 171(4): 2432-44, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27303024

RESUMEN

Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase.


Asunto(s)
Alcaloides/metabolismo , Carboxiliasas/metabolismo , Evolución Molecular , Huperzia/enzimología , Lycopodium/enzimología , Ornitina Descarboxilasa/metabolismo , Alcaloides/química , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Carboxiliasas/genética , Descarboxilación , Huperzia/química , Huperzia/genética , Lycopodium/química , Lycopodium/genética , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Cebollas/genética , Cebollas/metabolismo , Ornitina Descarboxilasa/genética , Filogenia , Hojas de la Planta/química , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(14): 3891-6, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27001858

RESUMEN

Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue.


Asunto(s)
Catharanthus/metabolismo , Células del Mesófilo/metabolismo , Epidermis de la Planta/metabolismo , Plantas Medicinales/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Células del Mesófilo/citología , Epidermis de la Planta/citología , Tallos de la Planta/metabolismo , Análisis de Componente Principal , Espectrometría de Masas en Tándem , Alcaloides de la Vinca/metabolismo
20.
J Nat Med ; 70(1): 107-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26499965

RESUMEN

Kampo, an empirically validated system of traditional Sino-Japanese medicine, aims to treat patients holistically. This is in contrast to modern medicine, which focuses in principle on treating the affected parts of the body of the patient. Kampo medicines formulated as combinations of crude drugs are prescribed based on a Kampo-specific diagnosis called Sho (in Japanese), defined as the holistic condition of each patient. Therefore, the medication system is very complex and is not well understood from a modern scientific perspective. Here, we show the informatics framework of Kampo medication by multivariate factor analysis of the elements constituting Kampo medication. First, the variation of Kampo formulas projected by principal component analysis (PCA) indicated that the combination patterns of crude drugs were highly correlated with Sho diagnoses of Deficiency and Excess. In an opposite way, partial least squares projection to latent structures (PLS) regression analysis could also predict Deficiency/Excess only from the composed crude drugs. Secondly, to chemically verify the correlation between Deficiency/Excess and crude drugs, we performed mass spectrometry (MS)-based metabolome analysis of Kampo prescriptions. PCA and PLS regression analysis of the metabolome data also suggested that Deficiency/Excess could be theoretically explained based on the variation in chemical fingerprints of Kampo medicines. Our results show that factor analysis of Kampo concepts and of the metabolomes of Kampo medicines enables interpretation of the complex system of Kampo. This study will theoretically form the basis for establishing traditionally and empirically based medications worldwide, leading to systematically personalized medicine.


Asunto(s)
Salud Holística , Medicina Kampo , China , Formas de Dosificación , Análisis Factorial , Femenino , Humanos , Japón , Informática Médica , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA