Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 339: 139764, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37557995

RESUMEN

Research studies have modified traditional substances to seek fast-acting removal of phosphorus in constructed wetlands (CWs) and ecological dams, rather than develop a brand-new nano-adsorbent. This work synthesized FeCa-based layered double hydroxide (FeCa-LDH) with a chemical co-precipitation method, and the performance, mechanism and factors of phosphorus removal were investigated. FeCa-LDH showed a marked ability to adsorb phosphorus from waste water, with a removal efficiency of 94.4% and 98.2% in CWs and ecological dams, respectively. Both FTIR and XPS spectrum evidenced that FeCa-LDH removed phosphorus via electrostatic and hydrogen-bonding adsorption, as well as a coordination reaction and interlayer anion exchange. FeCa-LDH showed a higher capacity to remove phosphorus in alkaline and neutral waste water than in acid conditions. Co-occurrence anions, which influenced the efficiency of the phosphorus removal capacity are considered in the sequence below: CO32- ≈ HCO3- > SO42- > NO3-. Innovatively, FeCa-LDH was not affected by the low-temperature limitation for CWs, and phosphorus removal efficiency at 5 °C was almost equal to that at 25 °C. These results cast a new idea on the construction, application and phosphorus removal performance of CWs and ecological dams.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Fósforo , Humedales , Proyectos Piloto , Hidróxidos , Adsorción , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 884: 163757, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142047

RESUMEN

Systematic understanding of phosphorus adsorption performance, mechanism, factors and reusability of layered double hydroxides (LDH) remains limited. Thus, iron (Fe), calcium (Ca) and magnesium (Mg)-based LDH (FeCa-LDH and FeMg-LDH), were synthesized with a co-precipitation method to improve phosphorus removal efficiency during the wastewater treatment process. Both FeCa-LDH and FeMg-LDH showed a considerable ability to remove phosphorus in wastewater. When the phosphorus concentration was 10 mg/L, the removal efficiency reached 99 % (FeCa-LDH: 1 min) and 82 % (FeMg-LDH: 10 min), respectively. The phosphorus removal mechanism was observed to be electrostatic adsorption, coordination reaction and anionic exchange, which was more evident at pH = 10 for FeCa-LDH. Co-occurrence anions that affected phosphorus removal efficiency, were observed in the following order: HCO3- > CO32- ≈ NO3- > SO42-. After five adsorption-desorption cycles, phosphorus removal efficiency was still up to 85 % (FeCa-LDH) and 42 % (FeMg-LDH), respectively. Together, the present findings suggest that LDHs were high-performance, strongly-stable and reusable phosphorus adsorbents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Fósforo , Hidróxidos , Adsorción , Purificación del Agua/métodos
3.
Bioresour Technol ; 371: 128610, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640818

RESUMEN

There is limited information on the phosphorus availability under copper and tetracycline-amended composting: Insights into microbial communities and genes. Thus, this work investigated the phosphorus redistribution and transformation, illustrated the variation in microbial communities and genes, and ascertained the multiple action-patterns among which within copper and tetracycline-amended composting. Phosphorus bioavailability reduced by 8.96 % âˆ¼ 13.10 % due to the conservation of Ex-P to Ca-P. Copper and tetracycline showed a significant effect on fungal succession, but not to bacteria, as well as inhibited the phosphorus functional genes in fungal communities, while accelerated it in bacterial communities. Under the copper/tetracycline-stressed conditions, bacterial Firmicutes could promote the mineralization of organic phosphorus, and bacterial Proteobacteria might facilitate the dissolution of inorganic phosphorus. These findings could provide theoretical guidance for the further research on phosphorus bioavailability ascribed to microbial communities and genes.


Asunto(s)
Compostaje , Fósforo , Cobre/farmacología , Disponibilidad Biológica , Antibacterianos/farmacología , Tetraciclina , Bacterias/genética , Suelo , Estiércol/microbiología
4.
J Environ Sci (China) ; 113: 356-364, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963543

RESUMEN

Considerable research efforts have been devoted to increase phosphorus (P) availability during aerobic composting. However, there is little discussion weather the dissolved organic carbon (DOC) controls the transformation among P-fractions. Thus, we investigated the changes in DOC compositions and P-fractions during biochar-amended composting (wet weight basis, 5% and 10%). TP content continuously increased since the 'concentration effect' during aerobic composting. NaHCO3-Pi, NaOH-Pi and HCl-Pi were main P-fractions, and biochar can improve P-bioavailability by transforming NaOH-Pi and HCl-Pi into NaHCO3-Pi. Structure equation models (SEMs) indicated that biochar enhanced the P-bioavailability through regulating the decomposition of DOC. Our results at least hint that the activation mechanism on P under the influence of DOC during biochar-amended composting.


Asunto(s)
Compostaje , Disponibilidad Biológica , Carbón Orgánico , Materia Orgánica Disuelta , Fósforo , Suelo
5.
J Environ Manage ; 292: 112768, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33984644

RESUMEN

Considerable researches have been devoted to ascertain the transformation among heavy metal (HM) or phosphorus (P) fractions during aerobic composting. However, available information that additives with different grain-sizes regulate the activation mechanism on P through influencing the passivation effect on HMs remains limited. Thus, this work aimed to investigate the dynamic changes in HM-fractions and P-fractions, and ascertain the interaction pathway between HMs and P during aerobic composting amended with medical stone (Coarse medical stone, 3-5 mm; Fine medical stone, < 0.1 mm). Medical stone, especially for coarse-grained medical stone, significantly enhanced the HM-passivation and P-activation during the composting (P < 0.05). The bioavailability factor of HMs decreased by 48.05% (Cu), 20.65% (Pb), 15.58% (Cd) and 6.10% (Zn), and the content of labile available P (LAP) increased by 6.45%. HMs, with the explanatory capacity of 65.9%-84.9%, was important parameter superior to temperature (0.8%-5.4%), moisture content (MC, 0.1%-1.7%), pH (0.1%-8.7%), electric conductivity (EC, 0.8%-9.8%), carbon-to-nitrogen (C:N, 0.3%-2.3%) ratio and dissolved organic carbon (DOC, 0.4%-3.1%), to evaluate the transformation among P-fractions. Our results cast a new light on P-activation with respect to HM-passivation during aerobic composting.


Asunto(s)
Compostaje , Metales Pesados , Metales Pesados/análisis , Nitrógeno , Fósforo , Suelo
6.
Chemosphere ; 263: 128139, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33297127

RESUMEN

Cyanobacterial harmful algal blooms and microcystins (MCs) pollution pose serious threat to aquatic ecosystem and public health. Planted and unplanted constructed wetlands (CWs) filled with four substrates (i.e., gravel (G-CWs), ceramsite (C-CWs), iron-carbon (I-CWs) and slag (S-CWs)) were established to evaluate nutrients and a typical MCs variant (i.e., MC-LR) removal efficiency from eutrophic water affected by the presence of plant and different substrate. The response of the microbial community to the above factors was also analyzed in this study. The results indicate that the presence of plant can generally enhance nutrients and MC-LR removal efficiency in CWs, except for I-CWs. Throughout the experiment, all CWs exhibited good nitrogen removal efficiency with removal percentages exceeding 90%; TP and MC-LR average removal efficiency of C-CWs and I-CWs were greater than G-CWs and S-CWs irrespective of the presence of plant. The best MC-LR removal efficiency under different MC-LR loads was observed in planted C-CWs (ranged from 91.56% to 95.16%). Except for I-CWs, the presence of plant can enhance relative abundances of functional microorganisms involved in nutrients removal (e.g., Comamonadaceae and Planctomycetaceae) and MCs degradation (e.g., Burkholderiaceae). The microbial community diversity of I-CWs was simplified, while the relative abundance of Proteobacteria was highest in this study. The highest relative abundances of Comamonadaceae, Planctomycetaceae and Burkholderiaceae were observed in planted C-CWs. Overall, ceramisite and iron-carbon were more suitable to be applied in CWs for nutrients and MC-LR removal. This study provides a theoretical basis for practical application of CWs in eutrophication and MCs pollution control.


Asunto(s)
Microbiota , Humedales , Microcistinas , Nitrógeno , Nutrientes , Agua
7.
Chemosphere ; 239: 124795, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31520977

RESUMEN

Greenhouse gas (GHG) emissions from constructed wetlands (CWs) have raised environmental concern and thus offset their environmental and ecological benefits. This study evaluated the influence of plant species, i.e., Canna indica (C. indica), Cyperus alternifolius (C. alternifolius), Phragmites australis (P. australis) and unplanted control, on GHG emissions, pollutant removal and associated microbial abundance in subsurface flow constructed wetland (SSFCW) mesocosms. C. indica outperformed the other tested plant species in pollutant removal, and the presence of plants irrespective of species enhanced the removal efficiencies of nitrogen, phosphorus and organics in SSFCW mesocosms compared to unplanted control. The greatest carbon dioxide (CO2) flux (582.01 ±â€¯89.25 mg/m2/h), methane (CH4) flux (21.88 ±â€¯2.51 µg/m2/h) and nitrous oxide (N2O) flux (37.27 ±â€¯15.82 µg/m2/h) were observed in mesocosms planted with C. indica, P. australis and C.alternifolius, respectively. Unexpectedly, the mcrA and pmoA genes were not detected in any mesocosms. For denitrifiers, the N2O fluxes showed a significantly (p < 0.05) positive correlation with nirS and nirK genes abundance. The abundance of nosZ gene (ranged from 0.18 × 104 to 0.75 × 104 copies/mg gravel) and nosZ/(nirS + nirK) (ranged from 1.29 × 10-4 to 2.12 × 10-4 copies/mg gravel) in this study was lower than that in most reported studies. Regarding the global warming potential (GWP), the lowest value was observed in mesocosms planted with C. indica. In conclusion, C. indica is selected as the optimal plant species in this study due to its lower GWP and excellent pollutant removal performance.


Asunto(s)
Gases de Efecto Invernadero/análisis , Magnoliopsida/fisiología , Eliminación de Residuos Líquidos/métodos , Humedales , Dióxido de Carbono/análisis , Desnitrificación , Metano/análisis , Nitrógeno/metabolismo , Óxido Nitroso/análisis , Fósforo/metabolismo , Especificidad de la Especie , Aguas Residuales/análisis
8.
Bioresour Technol ; 289: 121745, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31323724

RESUMEN

The status of heavy metals and the P fractions in compost affects their environmental risk. The present study investigated the effects of different initial carbon to nitrogen (C/N) ratios (15, 22, 27) on redistribution of Cu, Zn, and P fractions during composting. The results showed that the composting process transformed Cu, Zn and P from mobile fractions to more stable fractions. Compost with an initial C/N of 22 showed the most effective immobilization of Cu, Zn and P because of yielding greatest degree of polymerization. Multivariate statistical analysis identified organic matter as the most critical factor for explaining the redistribution of Cu, Zn, and P fractions in composting. However, the degree of organic matter degradation (organic matter content and Humic acid/Fulvic acid) better explained the change of bioavailability factor for Cu and the mobility of P during composting. This research provided guidance for providing technology to reduce environmental risk in compost.


Asunto(s)
Carbono/metabolismo , Compostaje , Cobre/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Zinc/metabolismo , Disponibilidad Biológica
9.
Environ Sci Pollut Res Int ; 26(16): 16014-16025, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30968294

RESUMEN

Phosphorus is a dominant environmental factor in fostering eutrophication, and its biogeochemical behavior has attracted much attention. This study investigated the distribution of phosphorus fractions and the adsorption-desorption characteristic in the soils of wetlands converted from paddy fields with a restoration duration of 1, 2, 3, 5, 13, or 19 years. The results demonstrated the content of total phosphorus (TP) first increased, which was then reversed until the process stabilized after 5 restoration years. Labile inorganic phosphorus (L-Pi), labile organic phosphorus (L-Po), iron-aluminum-bound phosphorus (Fe.Al-P), and humic phosphorus (Hu-P) peaked at 1-3 restoration years, respectively, while moderately labile organic phosphorus (Ml-Po), calcium-magnesium-bound phosphorus (Ca.Mg-P), and residual phosphorus (Re-P) decreased within 0-5 restoration years. During the 5th to 19th restoration years, the contents of all phosphorus fractions stabilized within a minor fluctuating range. Redundancy analysis (RDA) results indicated that total nitrogen (TN) and soil organic matter (SOM) are the important environmental factors controlling redistribution of phosphorus fractions. The capability of restored wetlands to retain phosphorus increased first and then decreased with the extension of the restoration duration. Path analysis (PA) results demonstrated that pH, TN, and Fe are the primary factors for the capacity of soil to retain phosphorus, followed by SOM, Mn, and electrical conductivity(EC). Fe.Al-P and Hu-P had a higher release risk with approximate amounts of 197.25-337.25 and 113.28-185.72 mg/kg during the first stage of restoration, which needs to be focused.


Asunto(s)
Fósforo/análisis , Fósforo/química , Suelo/química , Humedales , Adsorción , China , Restauración y Remediación Ambiental/métodos , Sustancias Húmicas , Nitrógeno/análisis , Factores de Tiempo
10.
Chemosphere ; 223: 319-329, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784738

RESUMEN

Phosphorus, a dominating element responsible for eutrophication, is a potential limiting nutrient in wetland ecosystem. In this study, the release risk of phosphorus was evaluated by investigating the distribution of phosphorus fractions in different grain-sizes of soil aggregates in wetlands with restoration durations of 1, 2, 3, 5, 13 or 19 years. The results showed that the soil aggregate structure tended to be stable when paddy fields were changed into wetland, though aggregate structure first condensed fine-aggregates (<0.25 mm) into coarse-aggregates (>0.25 mm), which was then reversed until the process stabilized after 5 restoration years. With the exception of labile inorganic phosphorus (L-Pi), which continuously decreased within extended abandoned period, total phosphorus (TP), labile organic phosphorus (L-Po), moderately labile organic phosphorus (Ml-Po), iron-aluminum bound phosphorus (Fe·Al-P), calcium-magnesium bound phosphorus (Ca·Mg-P), humic phosphorus (Hu-P) and residual phosphorus (Re-P) concentrations presented a unimodal tendency with a peak at the 2nd or 3rd restoration year, respectively. TP, L-Pi, L-Po and Re-P tended to decrease with decreasing soil aggregate grain-size, and Ml-Po was enriched in small macro-aggregates (0.25-1 mm) and micro-aggregates (0.053-0.25 mm). Macro-aggregates carried Fe·Al-P and Ca·Mg-P. Adsorption isotherm simulation results demonstrated that the retention capacity for phosphorus of a restored wetland first increased and then decreased with extended abandonment period, and macro-aggregates showed a considerable capacity to retain phosphorus. Fe.Al-P and Hu-P had potential release risk with approximate amounts of 197.25-337.25 mg kg-1 and 131.28-185.72 mg kg-1, in associated with anaerobic environment and aggregate structure.


Asunto(s)
Ecosistema , Fósforo/química , Suelo/química , Humedales , Restauración y Remediación Ambiental , Factores de Tiempo
11.
Artículo en Inglés | MEDLINE | ID: mdl-30646499

RESUMEN

Phosphorus in agro-ecosystems has attracted much attention due to its impact on the nutrient supply of plants and the risk of loss of non-point source pollution. This study investigated the fraction distribution and release of phosphorus from soil aggregates structure under different land uses (rice, maize and soybean). The soil aggregates were characterized as large macro-aggregates (L-mac, >1 mm), small macro-aggregates (S-mac, 0.25⁻1 mm), micro-aggregates (MIC, 0.053⁻0.25 mm) and silt clay (SC, <0.053 mm) with the wet-sieving method. A sequential chemical extraction scheme was used to separate phosphorus into labile inorganic phosphorus (L-Pi), labile organic phosphorus (L-Po), moderately labile organic phosphorus (Ml-Po), iron-aluminum bound phosphorus (Fe.Al-P), calcium-magnesium bound phosphorus (Ca.Mg-P), humic phosphorus (Hu-P) and residual phosphorus (Re-P). Experimental results indicated that soil aggregates were mainly S-mac and MIC, followed by L-mac and SC, and they accounted for 52.16%, 25.20%, 14.23% and 8.49% in rice fields, 44.21%, 34.61%, 12.88% and 8.30% in maize fields, and 28.87%, 47.63%, 3.52% and 19.99% in soybean fields, respectively. Total nitrogen (TN), soil organic matter (SOM), Fe and Mn in soil aggregate fractions decreased with the reduction in soil aggregate grain-sizes. For phosphorus fractions (P-fractions), Fe.Al-P and Re-P tended to condense in L-mac and S-mac. MIC and SC were the primary carriers of Ca.Mg-P. Adsorption isotherm simulation results demonstrated that L-mac and S-mac have a strong capacity to retain phosphorus. In rice fields, phosphorus bioavailability and utilization rate were high. However, the P-fractions there were easily changed under aerobic-anaerobic conditions. Therefore, the risk of phosphorus loss during drainage should be given considerable attention.


Asunto(s)
Fósforo/análisis , Suelo/química , Agricultura , China , Ecosistema , Metales/análisis , Nitrógeno/análisis , Oryza , Fósforo/química , Glycine max , Zea mays
12.
Water Sci Technol ; 77(3-4): 829-837, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29431728

RESUMEN

In this study, the influence of vegetation type and environmental temperature on performance of constructed wetlands (CWs) was investigated. Results of vegetation types indicated that the removal of most nutrients in polyculture was greater than those in monoculture and unplanted control. The greatest removal percentages of NH4+-N, total nitrogen (TN) and total phosphorus (TP) in polyculture were 98.7%, 98.5%, and 92.6%, respectively. In experiments of different temperatures, the removal percentages of NH4+-N, NO3--N, TN and TP in all CWs tended to decrease with the decline of temperature. Especially, a sharp decline in the removal percentages of NO3--N (decreased by above 13.8%) and TN (decreased by above 7.9%) of all CWs was observed at low temperature (average temperature of 8.9 °C). Overall, the performance of CWs was obviously influenced by temperature, and the polyculture still showed best performance in the removal of nitrogen when the average temperature dropped to 19.8 °C. Additionally, the variations of urease activities in rhizosphere soil tended to decrease with the decreasing temperature. Overall, a substantial enhancement for nitrogen and TP removal in polyculture (Canna indica + Lythrum salicaria) was observed. In conclusion, CW cultivated with polyculture was a good strategy for enhancing nutrient removal when temperature was above 19.8 °C.


Asunto(s)
Lythrum/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Humedales , Zingiberales/metabolismo , Compuestos de Amonio/metabolismo , Biodegradación Ambiental , Nitrógeno/metabolismo , Fósforo/metabolismo , Temperatura
13.
Chemosphere ; 187: 52-61, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28837857

RESUMEN

This study aims to evaluate how plant species, influent loads and salinity levels affect the removal of nutrients from saline wastewater using constructed wetlands (CWs). CWs planted with Canna indica showed the greatest removal percentages among the four tested species for nitrogen (N) (∼100%) at both low and high influent loads, and ∼100% and 93.8% for phosphorus (P) at low and high influent loads, respectively at an electrical conductivity (EC) of 7 mS/cm (25 °C). The influence of different salinity levels on plant assimilation of N and P varied with their respective concentrations; salinity (e.g., EC at 7, 10 and 15 mS/cm) even enhanced plant absorption of N and P under specific conditions. In conclusion, CWs planted with selected species can be used for the removal of N and P under a range of different salinity levels (e.g., EC at 7, 10 and 15 mS/cm, 25 °C).


Asunto(s)
Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Plantas/metabolismo , Aguas Residuales/química , Humedales , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA