Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2631-2638, 2019 Aug.
Artículo en Chino | MEDLINE | ID: mdl-31418187

RESUMEN

Despite its monotonous structure, sea-island plays a crucial role in sustaining biodiversity and ecosystem functioning. The objectives of this study were to explore the altitudinal variation of soil carbon (C), nitrogen (N), and phosphorus (P) pools in forests across 14 islands spanning temperate zone (TZ), northern subtropical zone (NSZ), mid-subtropical zone (MSZ), and sou-thern subtropical zone (SSZ) in eastern China. The relationships of soil C and nutrient pools with climatic factors and plant species diversity were examined across islands. Our results showed that soil C, N and P pools differed significantly across climatic zones. Soil C and N pools were the lowest in TZ (49.35 and 1.08 t·hm-2) and the highest in NSZ (137.25 and 4.63 t·hm-2). Soil P pool was the lowest in SSZ (1.3 t·hm-2) and the highest in NSZ (5.19 t·hm-2). There were significant difference in soil C, N and P pools among vegetation types. Soil C, N and P pools in deciduous forests were significantly higher in subtropical than in temperate islands. Soil C and N pools in evergreen broadleaved forests did not differ among sub-climatic zones, and soil P pool was lower in SSZ than that in NSZ and MSZ. The interactions across mean annual temperature, mean annual precipitation, soil water content, and plant species diversity positively affected latitudinal variation in soil C, N, and P pools. Plant species diversity positively associated with soil N pool, but negatively linked with soil P pool. In conclusion, the latitudinal trend of soil C pool is different, but that of soil N and P pools are identical between sea-island and mainland. The main abiotic and biotic dri-vers of soil C, N and P pools are water availability, temperature and plant species diversity across sea-islands in eastern China.


Asunto(s)
Carbono , Ecosistema , Nitrógeno , Fósforo , China , Bosques , Islas , Suelo
2.
PLoS One ; 8(4): e61113, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560114

RESUMEN

Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Árboles/crecimiento & desarrollo , China , Ecosistema , Aptitud Genética , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Análisis de Regresión , Suelo/química , Temperatura , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA