Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Biochem ; 45(11): e13956, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34590315

RESUMEN

The effects of phloridzin (PHL), main component of Malus hupehensis (MH) tea leaves, on blood glucose (BG) and glucose-6-phosphatase (G-6-Pase) were investigated to provide a basis for finding a scheme of stabilizing BG. Glucose uptake of insulin resistant HepG2 cells was measured by glucose oxidase method. Glucose tolerance, fasting BG (FBG) and postprandial BG (PBG) were determined by BG test strips. The expression of G-6-Pase was detected by Western blot. The results showed that glucose uptake was enhanced and the expression of G-6-Pase was inhibited by PHL in insulin resistant HepG2 cells. Glucose tolerance was enhanced, FBG level was increased and PBG level was decreased by PHL in mice. The expression of G-6-Pase in the liver was enhanced under fasting state, and was inhibited by the low and medium dose under postprandial state. It indicated that PHL has a positive effect on stabilizing BG in mice, which is related to bidirectional regulation of G-6-Pase activity. PRACTICAL APPLICATIONS: Malus hupehensis, edible and medicinal plant, which has been proved by long-term application and experiments that it has a good effect on stabilizing blood glucose, preventing diabetes and adjuvant treatment. Its effect is closely related to its main component PHL. Thus, MH can be used as a dietary regulating drink for daily life to maintain blood glucose. Its main ingredient is PHL, which can be developed as a candidate drug for diabetes treatment.


Asunto(s)
Glucemia , Gluconeogénesis , Animales , Glucosa-6-Fosfatasa/metabolismo , Insulina/metabolismo , Ratones , Florizina/farmacología
2.
Drug Des Devel Ther ; 10: 389-403, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26855564

RESUMEN

OBJECTIVE: To investigate whether Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones exert apoptosis-inhibiting effects in ultraviolet B (UVB)-irradiated HaCaT cells. METHODS: We divided HaCaT cells into low radiation UVB and high radiation UVB groups. Low radiation UVB and high radiation UVB groups were further divided into a control group, UVB radiation group (UVB group), S. tridactyla Sch. Bip.-derived polysaccharides and flavones low-dose group, and S. tridactyla Sch. Bip.-derived polysaccharides and flavones high-dose group. Cell viability and morphology were assayed by MTT and trypan blue staining. Superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity test kits were used to detect superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity, respectively. Cell apoptosis, intracellular Ca(2+) levels, and mitochondrial membrane potential (Δψ) were detected by flow cytometry. Protein levels were analyzed by Western blotting and immunofluorescence. RESULTS: S. tridactyla Sch. Bip.-derived polysaccharides and flavones were found to increase the absorbance of MTT, decrease cell death, alleviate the degree of cell edema, restore the cell morphology, reduce cell death fragments and chip phenomenon, increase superoxide dismutase activity, glutathione content, and catalase activity while decreasing the content of malondialdehyde, lowering the population of apoptotic cells, reducing the intracellular Ca(2+) fluorescence, increasing the mitochondrial membrane potential (Δψ), increasing the expressions of p-38, p-53, Bcl-2, and decreasing the expressions of Bax and active-caspase-3. CONCLUSION: S. tridactyla Sch. Bip.-derived polysaccharides and flavones can reduce cell apoptosis to protect HaCaT cells from oxidative damage after UVB irradiation; however, this effect does not occur via the p38MAPK pathway.


Asunto(s)
Flavonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Polisacáridos/farmacología , Saussurea/química , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Calcio/metabolismo , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Flavonas/aislamiento & purificación , Citometría de Flujo , Glutatión/metabolismo , Humanos , Malondialdehído/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Polisacáridos/aislamiento & purificación , Dosis de Radiación , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta/efectos adversos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA