Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155419, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522314

RESUMEN

BACKGROUND: Disturbance of the blood‒brain barrier (BBB) and associated inflammatory responses are observed in patients with hepatic encephalopathy (HE) and can cause long-term complications. Dahuang-Wumei decoction (DWD) is a renowned traditional Chinese herbal medicine with a long history of clinical use and has been widely employed as an effective treatment for hepatic encephalopathy (HE). Despite its established efficacy, the precise mechanisms underlying the therapeutic effects of DWD have not been fully elucidated. PURPOSE: The present study aimed to comprehensively explore the potential effects and underlying molecular mechanisms of DWD on HE through an integrated investigation that included both in vivo and in vitro experiments. METHODS: In the present study, carbon tetrachloride (CCl4) and thioacetamide (TAA) were used to establish an HE model in mice. The therapeutic effects of DWD on liver injury, fibrosis, brain injury, behaviour, and consciousness disorders were evaluated in vivo. C8-D1A and bEnd.3 cells were used to construct a BBB model in vitro. The effects of DWD on proinflammatory factor expression, BBB damage and the Wnt/ß-catenin pathway were detected in vivo and in vitro. RESULTS: Our results showed that DWD can improve liver injury and fibrosis and brain damage and inhibit neurofunctional and behavioural disorders in mice with HE. Afterwards, we found that DWD decreased the levels of proinflammatory factors and suppressed BBB disruption by increasing the levels of junction proteins in vivo and vitro. Further studies verified that the Wnt/ß-catenin pathway may play a pivotal role in mediating the inhibitory effect of DWD on HE. CONCLUSION: These results demonstrated that DWD can treat HE by preventing BBB disruption, and the underlying mechanisms involved were associated with the activation of the Wnt/ß-catenin pathway and the inhibition of inflammatory responses.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Encefalopatía Hepática , Tioacetamida , Vía de Señalización Wnt , Animales , Medicamentos Herbarios Chinos/farmacología , Encefalopatía Hepática/tratamiento farmacológico , Masculino , Vía de Señalización Wnt/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Ratones , Tetracloruro de Carbono , Línea Celular , Ratones Endogámicos C57BL
2.
J Ethnopharmacol ; 321: 117432, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37992880

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: It has been widely reported that various anti-rheumatic traditional Chinese medicines (TCMs) ameliorate rheumatoid arthritis (RA) and osteoarthritis (OA) through regulating the abnormal production, assembly, and activation of the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome. These TCMs include monomers isolated from Chinese herbs, extracts of Chinese herbs, and Chinese medical formulae with a lengthy application history. AIM OF THE STUDY: This review aimed to summarize and analyze the published articles about the NLRP3 inflammasome and its role in the pathogenesis of RA and OA. We also reviewed existing knowledge on the therapeutic mechanism of TCMs in RA and OA via the regulation of the NLRP3 inflammasome. MATERIALS AND METHODS: We searched for relevant articles with the keywords "NLRP3 inflammasome", "traditional Chinese medicine," "Chinese herbal drugs," "rheumatoid arthritis," and "osteoarthritis." The information retrieval was conducted in medical Chinese and English databases from the date of construction to April 19, 2023, including PubMed, MEDLINE, Web of Science, Scopus, Ovid, China National Knowledge Infrastructure (CNKI), Chinese Biomedicine Literature Database (CBM), Chinese Science and Technology Periodicals Database (VIP), and China Online Journals (COJ). RESULTS: According to retrieval results, 35 TCMs have been demonstrated to relieve RA by targeting the NLRP3 inflammasome, including six traditional Chinese prescriptions, seven extracts of Chinese herbs, and 22 monomers extracted from traditional Chinese herbs and formulae. Additionally, 23 TCMs have shown anti-OA effects with abilities to modulate the NLRP3 inflammasome, including five traditional Chinese prescriptions, one extract of Chinese herbs, and 17 monomers from Chinese herbs. CONCLUSIONS: We summarized mechanism research about the pivotal roles of the NLRP3 inflammasome in the pathogenesis of RA and OA. Moreover, a review of TCMs with targets of the NLRP3 inflammasome in RA and OA treatment was also conducted. Our work is conducive to a better application of TCMs in complementary and alternative therapies in RA and OA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Medicamentos Herbarios Chinos , Osteoartritis , Humanos , Inflamasomas , Medicina Tradicional China , Proteína con Dominio Pirina 3 de la Familia NLR , Artritis Reumatoide/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico
3.
Front Mol Biosci ; 10: 1140325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950522

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related death. In recent years, the relationship between gut microbiota and CRC has attracted increasing attention from researchers. Studies reported that changes in the composition of gut microbiota, such as increase in the number of Fusobacterium nucleatum and Helicobacter hepaticus, impair the immune surveillance by affecting the intestinal mucosal immunity and increase the risk of tumor initiation and progression. The tumor microenvironment is the soil for tumor survival. Close contacts between gut microbiota and the tumor microenvironment may directly affect the progression of tumors and efficacy of antitumor drugs, thus influencing the prognosis of patients with CRC. Recently, many studies have shown that traditional Chinese medicine can safely and effectively improve the efficacy of antitumor drugs, potentially through remodeling of the tumor microenvironment by regulated gut microbiota. This article describes the effect of gut microbiota on the tumor microenvironment and possible mechanisms concerning the initiation and progression of CRC, and summarizes the potential role of traditional Chinese medicine.

4.
J Ethnopharmacol ; 309: 116274, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-36841380

RESUMEN

ETHNOPHAMACOLOGICAL RELEVANCE: Simiao Pill (SM) as a classic prescription of traditional Chinese medicine treatment of damp-heat arthralgia, the earliest from 'Cheng Fan Bian Du ', written by the Qing Dynasty doctor Zhang Bingcheng. Previous studies have shown that SM has obvious curative effect on rheumatoid arthritis, which provides a basis for the application of SM in rheumatoid arthritis related complications. AIM OF THE STUDY: Interstitial lung disease (ILD), as the most severe complication of rheumatoid arthritis (RA), lacks effective clinical treatments and a corresponding animal model. Simiao pill (SM) is a traditional Chinese medicine prescription extensively used as a complementary and alternative treatment for RA. However, the effect and mechanism of SM on RA-ILD have not yet been reported. This study aimed to investigate an appropriate animal model that can simulate RA-ILD, and the efficacy, safety, and mechanism of SM on RA-ILD. METHODS: Collagen-induced arthritis (CIA) and bleomycin-induced pulmonary fibrosis model were combined to construct the CIA-BLM model. After the intervention of SM, the protective effects of SM on RA-ILD were determined by detecting the CIA mouse arthritis index (AI), Spleen index, and the extent of pulmonary fibrosis. The joint inflammation and pulmonary fibrosis were detected by immunohistochemistry, H&E staining, safranin- O fast green Sirius red staining, trap staining, and Masson staining. Finally, the mechanism was verified by Western blot and immunohistochemistry. RESULTS: Our work showed that SM significantly reduced joint swelling, arthritis index, pulmonary fibrosis score, and spleen index in CIA mice. The pathological examination results indicated Si-Miao Pill suppressed inflammation, pulmonary fibrosis, bone erosion, and cartilage degradation of the ankle joint. Besides, SM up-regulated expressions of E-cadherin, whereas down-regulated expressions of α-SMA. Further studies confirmed that SM regulated JAK2/STAT3 and TGF-ß/SMAD2/3. CONCLUSION: SM can not only effectively improve joint inflammation by JAK2/STAT3 Pathway but also inhibit pulmonary fibrosis by TGF-ß/SMAD2/3. The fibrosis induced by CIA-BLM model was more stable and obvious than that induced by CIA model alone.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Animales , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Bleomicina/toxicidad , Enfermedades Pulmonares Intersticiales/inducido químicamente , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/patología , Inflamación/tratamiento farmacológico
5.
Small ; 19(17): e2206936, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36719986

RESUMEN

Calcium overload and ROS overproduction, two major triggers of acute kidney injury (AKI), are self-amplifying and mutually reinforcing, forming a complicated cascading feedback loop that induces kidney cell "suicide" and ultimately renal failure. There are currently no clinically effective drugs for the treatment of AKI, excluding adjuvant therapy. In this study, a porous silicon-based nanocarrier rich in disulfide bond skeleton (<50 nm) is developed that enables efficient co-loading of the hydrophilic drug borane amino complex and the hydrophobic drug BAPTA-AM, with its outer layer sealed by the renal tubule-targeting peptide PEG-LTH. Once targeted to the kidney injured site, the nanocarrier structure collapses in the high glutathione environment of the early stage of AKI, releasing the drugs. Under the action of the slightly acidic inflammatory environment and intracellular esterase, the released drugs produce hydrogen and BAPTA, which can rapidly eliminate the excess ROS and overloaded Ca2+ , blocking endoplasmic reticulum/mitochondrial apoptosis pathway (ATF4-CHOP-Bax axis, Casp-12-Casp-3 axis, Cyt-C-Casp-3 axis) and inflammatory pathway (TNF-α-NF-κB axis) from the source, thus rescuing the renal cells in the "critical survival" state and further restoring the kidney function. Overall, this nanoparticle shows substantial clinical promise as a potential therapeutic strategy for I/R injury-related diseases.


Asunto(s)
Lesión Renal Aguda , Calcio , Humanos , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Retroalimentación , Apoptosis , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Riñón/metabolismo
6.
ACS Nano ; 17(1): 472-491, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574627

RESUMEN

Calcium overload is one of the early determinants of the core cellular events that contribute to the pathogenesis of acute kidney injury (AKI), which include oxidative stress, ATP depletion, calcium overload, and inflammatory response with self-amplifying and interactive feedback loops that ultimately lead to cellular injury and renal failure. Excluding adjuvant therapy, there are currently no approved pharmacotherapies for the treatment of AKI. Using an adipic dihydride linker, we modified the hyaluronic acid polymer chain with a potent antioxidant, bilirubin, to produce an amphiphilic conjugate. Subsequently, we developed a kidney-targeted and reactive oxygen species (ROS)-responsive drug delivery system based on the flash nanocomplexation method to deliver a well-known intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM, BA), with the goal of rescuing renal cell damage via rapidly scavenging of intracellularly overloaded Ca2+. In the ischemia-reperfusion (I/R) induced AKI rat model, a single dose of as-prepared formulation (BA 100 µg·kg-1) 6 h post-reperfusion significantly reduced renal function indicators by more than 60% within 12 h, significantly alleviated tissular pathological changes, ameliorated tissular oxidative damage, significantly inhibited apoptosis of renal tubular cells and the expression of renal tubular marker kidney injury molecule 1, etc., thus greatly reducing the risk of kidney failure. Mechanistically, the treatment with BA-loaded NPs significantly inhibited the activation of the ER stress cascade response (IRE1-TRAF2-JNK, ATF4-CHOP, and ATF6 axis) and regulated the downstream apoptosis-related pathway while also reducing the inflammatory response. The BA-loaded NPs hold great promise as a potential therapy for I/R injury-related diseases.


Asunto(s)
Lesión Renal Aguda , Nanopartículas , Ratas , Animales , Calcio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Hialurónico , Bilirrubina , Apoptosis , Lesión Renal Aguda/tratamiento farmacológico , Estrés del Retículo Endoplásmico
7.
J Ethnopharmacol ; 301: 115802, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36209953

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thousands of years of clinical practice in the treatment of joint-related diseases support the efficacy and safety of Wutou decoction (WTD). Nevertheless, the lack of pharmacological evidence and unclear mechanisms make it difficult for WTD to become a recognized complementary therapy for the treatment of rheumatoid arthritis (RA). AIM OF THE STUDY: This study aimed to investigate the effect of WTD against synovial inflammation in RA and whether this effect depends on the regulation of macrophage polarization. MATERIALS AND METHODS: Sprague-Dawley rats were used to establish the collagen-induced arthritis (CIA) model. WTD with low and high doses was administered for 45 days. RAW264.7 cells were stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4 to polarize M1 and M2 macrophages, which were pre-treated with WTD extract for 4 h. The anti-arthritic and anti-inflammatory effects of WTD were studied using arthritis score, histopathological staining, immunostaining, and enzyme-linked immunosorbent assay (ELISA). The polarization state of RAW264.7 cells and related pro/anti-inflammatory cytokines was detected by ELISA, reverse transcription quantitative polymerase chain reaction and western blotting. Western blotting and immunofluorescence were used to investigate the effect of WTD on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptors γ (PPARγ) activation both in vivo and in vitro. RESULTS: WTD significantly reduced the arthritis score and the pathological damage of the knee joint and decreased the expression of tumor necrosis factor alpha (TNF-α), IL-6 in serum, TNF-α, IL-1ß, monocyte chemoattractant protein-1 (MCP-1), and matrix metalloproteinase-3 (MMP3) in the knee synovium. WTD inhibited M1 type polarization and promoted M2 type polarization, both in vitro and in vivo, and reduced the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines. Experiments showed that WTD inhibited the phosphorylation of NF-κB and downstream p38 in the synovium of CIA rats and LPS-induced M1 type polarized RAW264.7 cells. In addition, PPARγ expression in the synovium of CIA rats was mainly located in the cytoplasm, and WTD treatment increased the nuclear translocation of PPARγ, which was further verified in RAW264.7 cells. CONCLUSIONS: NF-κB and PPARγ regulating M1 and M2 macrophage polarization and subsequent secretion of pro-inflammatory and anti-inflammatory cytokines are the underlying mechanisms of WTD that ameliorate RA synovial inflammation.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Ratas , Antiinflamatorios , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Macrófagos , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
8.
Medicine (Baltimore) ; 101(37): e30525, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36123941

RESUMEN

A network pharmacology integrated molecular docking strategy was used to predict the underlying molecular mechanism of Ermiao san in the treatment of hyperuricemia and gout. Traditional Chinese medicine systems pharmacology (TCMSP) database and analysis platform were used to screen out the active compounds and their targets of Ermiao san. The disease target genes related to hyperuricemia (HUA) and gout were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, OMIM, TTD, and PharmGKB databases with "Hyperuricemia" and "Gout" as keywords, respectively. The potential targets of Ermiao san in the treatment of HUA and gout were screened through a Venn diagram. The protein-protein interaction network was constructed using Cytoscape software. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were then conducted. Finally, some compounds and core targets were selected for molecular docking verification by Autodock Vina and Pymol software. Forty-six active compounds, such as quercetin, wogonin and beta-sitosterol, etc were identified. Ermiao san plays a therapeutic role in HUA and gout regulating various biological processes, cellular compounds, and molecular functions. The core targets of Ermiao san for treating HUA and gout are AT1 (namely Protein Kinase Bα), interleukin-1 beta, prostaglandin-endoperoxide synthase 2, JUN, etc. And the key pathways are nuclear factor-κB, interleukin-17 and tumor necrosis factor. The results of molecular docking analyses suggested that active compounds of Ermiao san could bind well to the core protein receptors. Ermiao san has a synergistic mechanism of multiple compounds, multiple targets, and multiple pathways in the treatment of HUA and gout, which provides a good theoretical basis for the clinical application.


Asunto(s)
Gota , Hiperuricemia , Medicamentos Herbarios Chinos , Gota/tratamiento farmacológico , Humanos , Hiperuricemia/tratamiento farmacológico , Interleucina-17 , Interleucina-1beta , Simulación del Acoplamiento Molecular , FN-kappa B , Farmacología en Red , Prostaglandina-Endoperóxido Sintasas , Quercetina , Factores de Necrosis Tumoral
9.
J Ethnopharmacol ; 288: 114995, 2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35032584

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The dried flower bud of Syzygium aromaticum (L.) Merr. & L.M Perry (S. aromaticum) (Myrtaceae), also known as clove, was used in Traditional Chinese Medicine (TCM) to aid gastrointestinal function and treat stomach disorders including vomiting, flatulence and nausea. And it is a food homology medicine which is a promising candidate for H. pylori treatment. H. pylori is a Gram-negative bacterium that infects approximately 50% of the human population worldwide, which is closely related to multiple gastric diseases, including gastric cancer. However, there are still no sufficient studies on the anti-H. pylori activity of S. aromaticum, especially for the mechanism of action. AIM OF STUDY: This study aimed to study the antibacterial activities of S. aromaticum extracts on both antibiotic-sensitive and -resistant H. pylori strains, and to explore the underlying mechanisms of action. MATERIALS AND METHODS: The S. aromaticum extracts were obtained by heat reflux extraction and lyophilized to powder form. The phytochemical analyses were performed by High-performance liquid chromatography (HPLC) and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti-H. pylori activity was evaluated by broth microdilution method. Mechanism of action studies included morphological observation using electron microscopy, determination of expression of virulence genes by reverse transcription quantitative polymerase chain reaction (RT-qPCR), genes expression profile identification by transcriptomic analysis, and exploration of anti-H. pylori infection mechanisms by network pharmacology analysis and western blotting validation. RESULTS: The S. aromaticum extracts, aqueous extract (AE) and 75% hydroalcoholic extract (HE), exerted significant antibacterial activities against both antibiotic-sensitive and -resistant H. pylori strains with MICs of 160∼320 µg/ml, without developing drug resistance. Among them, AE was bactericide to all the tested strains with MBCs of less than 4MIC, while HE was merely bacteriostatic to most of the tested strains with MBCs of 2MIC∼16MIC. Besides, they showed no antagonistic effects in combination with clarithromycin, metronidazole, levofloxacin, and amoxicillin. Additionally, these extracts altered the morphology and ultrastructure and down-regulated the virulence genes expression of H. pylori. And transcriptomic analysis showed that they regulated genes expression of multiple H. pylori biological processes, including tricarboxylic acid cycle (TAC) and pyruvate metabolic pathways. Furthermore, these extracts combated the abnormal activation of PI3K-Akt and MAPK signaling pathways caused by H. pylori infection. CONCLUSIONS: Overall, the present study firstly analyzed the chemical compositions of S. aromaticum extracts, and then confirmed their activities on both antibiotic-sensitive and -resistant H. pylori strains. In addition, the mechanisms of action of S. aromaticum extracts against H. pylori were found to be destroying the bacterial structure, down-regulating the expression of virulence genes, and interfering TAC and pyruvate metabolic pathways. Finally, S. aromaticum extracts were found to combated the abnormal activation of PI3K-Akt and MAPK signaling pathways to treat H. pylori infection. This study should accelerate further research and application of S. aromaticum against H. pylori infection.


Asunto(s)
Antibacterianos/farmacología , Helicobacter pylori/efectos de los fármacos , Extractos Vegetales/farmacología , Syzygium/química , Antibacterianos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Humanos , Pruebas de Sensibilidad Microbiana , Farmacología en Red , Espectrometría de Masa por Ionización de Electrospray , Virulencia/genética
10.
Phytomedicine ; 94: 153844, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34785413

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a widespread cancer with high morbidity and mortality. Chemoresistance and metastasis are the current challenges for CRC treatment. Sanguisorba officinalis Linn. (called DiYu in Chinese, DY) is a traditional Chinese medicine (TCM) whose root is long used as medicinal part. In our previous study, the aqueous extract of DY could inhibit the Wnt/ß-catenin pathway and showed great antitumor effect against CRC. The Wnt/ß-catenin pathway is involved in CRC chemoresistance and metastasis. However, there is little study on the antitumor and antimetastatic effects of DY on resistant CRC cells. The aim of this study is to explore the effect of aqueous extract of DY on the growth and metastasis of 5-fluorouracil (5-FU) sensitive and resistant CRC, and to elucidate the underlying molecular mechanism. METHODOLOGY: In this study, cell viability, cell colony formation and apoptosis analyses were performed to verify the in vitro antitumor effect of DY on 5-FU-sensitive and -resistant CRC cells. Next, transwell assays were used to test the inhibition activity of DY on CRC migration and invasion. Western Blotting assays were carried out to identify the molecular mechanism underlying the efficacy of DY extract. Xenograft CRC nude mice model and tumor metastasis model were used to confirm the in vivo antitumor and antimetastatic effects of DY. RESULTS: DY inhibited cell proliferation and apoptosis via the upregulation of Bax, cleaved-caspase3 and cleaved-PARP proteins and downregulation of Bcl-2 protein. DY also inhibited cell migration and invasion via the downregulation of N-cadherin, vimentin and snail proteins and upregulation of E-cadherin protein, demonstrating that DY suppressed cell metastasis by reversing epithelial-to-mesenchymal transition (EMT) procession. Moreover, the protein expression levels of ß-catenin in whole cell, cytoplasm and nucleus were decreased after DY treatment. Taken together, DY suppressed CRC cell growth and metastasis via inhibition of the Wnt pathway. Additionally, DY also demonstrated effective antitumor and anti-metastasis activities in vivo. CONCLUSIONS: In conclusion, DY suppressed the growth and metastasis of 5-FU-sensitive and -resistant CRC via inhibition of the Wnt pathway, which indicated that DY could be a potential drug to treat CRC patients and improve clinic outcome.


Asunto(s)
Neoplasias Colorrectales , Sanguisorba , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Fluorouracilo/farmacología , Humanos , Ratones , Ratones Desnudos , Vía de Señalización Wnt , beta Catenina/metabolismo
11.
J Ethnopharmacol ; 283: 114578, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34464702

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Canarium album Raeusch. belongs to the Burseraceae family. Its ripe fruits, known as Qing Guo (QG) in Traditional Chinese Medicine (TCM), are used to treat sore throat, cough, and fish or crab poisoning. QG was reported to have antibacterial activity, and it exerted excellent anti-Helicobacter pylori (H. pylori) activity in our screening of abundant TCM. However, few studies have reported its anti-H. pylori activity and mechanism. AIM OF STUDY: The commonly used eradication therapies for H. pylori infection are antibiotic-based therapies. With the increasing antibiotic resistance of H. pylori, interest in finding alternative therapies has been aroused. This study investigated the phytochemistry profile, in vitro anti-H. pylori activity and possible anti-bacterial mechanism of QG extracts. MATERIALS AND METHODS: QG extracts were obtained by heat reflux extraction, ultrasonic extraction or liquid-liquid extraction with different solvents. The quantitative and qualitative phytochemical analyses were performed by colorimetric determination, high-performance liquid chromatography (HPLC), and UPLC-electrospray ionization mass spectrometry (ESI-MS). In vitro anti- H. pylori activity was assessed by broth micro-dilution method. Mechanism of action studies included morphological observation using electron microscopy, urease inhibition assay and determination of expression of virulence genes by RT-qPCR. RESULTS: All QG extracts especially ethyl acetate extract (QGEAE) were rich in phenolic components, with the minimum inhibitory concentrations (MICs) on H.pylori of 39-625 µg/ml and minimum bactericidal concentrations (MBCs) of 78-1250 µg/ml. Both aqueous extract (QGAE) and QGEAE could induce the morphological and structural changes of H. pylori, inhibit urease activity with IC50 of 1093 µg/ml and 332.90 µg/ml, respectively, and down-regulate the virulence genes, such as vacA and cagA. CONCLUSIONS: QG may exhibit in vitro anti-H. pylori activity by inhibiting growth, destroying the bacterial structure and down-regulating the expression of virulence factors. Moreover, QG is the homology of food and TCM, which can be considered as a safe and convenient agent against H. pylori infection.


Asunto(s)
Antibacterianos/farmacología , Burseraceae/química , Helicobacter pylori/efectos de los fármacos , Extractos Vegetales/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/aislamiento & purificación , Frutas , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/administración & dosificación
12.
Chin Med ; 16(1): 33, 2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33865425

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection has become an international public health problem, and antibiotic-based triple or quadruple therapy is currently the mainstay of treatment. However, the effectiveness of these therapies decreases due to resistance to multiple commonly used antibiotics. Sanguisorba officinalis L. (S. officinalis), a traditional Chinese medicine clinically used for hemostasis and treatment of diarrhea, has various pharmacological activities. In this study, in vitro antimicrobial activity was used for the preliminary evaluation of S. officinalis against H. pylori. And a pharmacology analysis approach was also utilized to elucidate its underlying mechanisms against H. pylori infection. METHODS: Micro-broth dilution method, agar dilution method, checkerboard assay, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used for the assessment of anti-bacterial activity. Active ingredients screening, GO analysis, KEGG analysis, construction of PPI network, molecular docking, and RT-qPCR were used to elucidate the underlying pharmacological mechanisms of S. officinalis against H. pylori infection. RESULTS: The minimum inhibitory concentration (MIC) values of S. officinalis against multiple H. pylori strains including clinically isolated multi-drug resistant (MDR) strains were ranging from 160 to 320 µg/ml. These results showed that S. officinalis had additive interaction with four commonly used antibiotics and could exert antibacterial effect by changing the morphology of bacteria without developing drug resistance. Through network pharmacology analysis, 8 active ingredients in S. officinalis were screened out for subsequent studies. Among 222 putative targets of S. officinalis, 49 targets were identified as potential targets for treatment of H. pylori infection. And these 49 targets were significantly enriched in GO processes such as protein kinase B signaling, protein kinase activity, protein kinase binding, and KEGG pathways such as Pathways in cancer, MicroRNAs in cancer, and TNF signaling pathway. Protein-protein interaction analysis yielded 5 core targets (AKT1, VEGFA, EGFR, SRC, CCND1), which were validated by molecular docking and RT-qPCR. CONCLUSIONS: Overall, this study confirmed the in vitro inhibitory activity of S. officinalis against H. pylori and explored the possible pharmacological mechanisms, laying the foundation for further research and clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA