Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(4): 2262-2271, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947497

RESUMEN

BACKGROUND: Diquat is a common environmental pollutant, which can cause oxidative stress in humans and animals. Diquat exposure causes growth retardation and intestinal damage. Therefore, this study was performed to investigate the effects of melatonin on diquat-challenged piglets. RESULTS: Dietary supplementation with 2 mg kg-1 melatonin significantly increased the average daily gain and feed conversion rate in piglets. Melatonin increased antioxidant capacity, and improved intestinal epithelial barrier function of duodenum and jejunum in piglets. Moreover, melatonin was found to regulated the expression of immune and antioxidant-related genes. Melatonin also alleviated diquat-induced growth retardation and anorexia in diquat-challenged piglets. It also increased antioxidant capacity, and ameliorated diquat-induced intestinal epithelial barrier injury. Melatonin also regulated the expression of MnSOD and immuner-elated genes in intestinal. CONCLUSION: Dietary supplementation with 2 mg kg-1 melatonin increased antioxidant capacity to ameliorate diquat-induced oxidative stress, alleviate intestinal epithelial barrier injury, and increase growth performance in weaned piglets. © 2023 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Melatonina , Humanos , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Diquat/efectos adversos , Melatonina/farmacología , Suplementos Dietéticos , Trastornos del Crecimiento
2.
Food Nutr Res ; 622018.
Artículo en Inglés | MEDLINE | ID: mdl-30083086

RESUMEN

BACKGROUND: Intestinal stem cells can be differentiated into absorptive enterocytes and secretory cells, including Paneth cells, goblet cells, and enteroendocrine cells. Glutamine is a primary metabolic fuel of small intestinal enterocytes and is essential for the viability and growth of intestinal cells. OBJECTIVE: Whether glutamine supplementation affects the differentiation of intestinal stem cells is unknown. DESIGN: Three-week-old ICR (Institute of Cancer Research) male mice were divided randomly into two groups: 1) mice receiving a basal diet and normal drinking water and 2) mice receiving a basal diet and drinking water supplemented with glutamine. After 2 weeks, the mice were sacrificed to collect the ileum for analysis. RESULTS: The study found that glutamine supplementation in weanling mice decreases the crypt depth in the ileum, leading to higher ratio of villus to crypt in the ileum, but promotes cell proliferation of intestinal cells and mRNA expression of Lgr5 (leucine-rich repeat-containing g-protein coupled receptor5) in the ileum. Glutamine has no effect on the number of Paneth cells and goblet cells, and the expression of markers for absorptive enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. CONCLUSION: These findings reveal the beneficial effects of dietary glutamine supplementation to improve intestinal morphology in weanling mammals.

3.
J Pineal Res ; 64(2)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28875556

RESUMEN

Melatonin influences intestinal microbiota and the pathogenesis of various diseases. This study was conducted to explore whether melatonin alleviates weanling stress through intestinal microbiota in a weanling mouse model. Melatonin supplementation in weanling mice (provided in the drinking water at a dosage of 0.2 mg/mL for 2 weeks) significantly improved body weight gain (1.4 ± 0.03 g/day in melatonin group vs 1.2 ± 0.06 g/day in control group) and intestinal morphology (ie, villus length, crypt depth, and villus to crypt ratio), but had little effect on the proliferation or apoptosis of intestinal cells, the numbers of Paneth cells and goblet cells, as well as the expression of makers related to enterocytes (sucrase) and endocrine cells (chromogranin A and peptide YY) in the ileum. Melatonin supplementation had little effect on serum levels of amino acids or stress-related parameters (eg, SOD, TNF-α, and angiotensin I). 16S rRNA sequencing suggested that melatonin supplementation increased the richness indices of intestinal microbiota (observed species, Chao 1, and ACE) and shaped the composition of intestinal microbiota (eg, increase in the abundance of Lactobacillus [19 ± 3% in melatonin group vs 6 ± 2% in control group]), which was demonstrated using an ex vivo proliferation assay and colonic loop proliferation assay. Melatonin supplementation also significantly influenced the metabolism of intestinal microbiota, such as amino acid metabolism and drug metabolism. More importantly, in antibiotic-treated weanling mice and germ-free weanling mice, melatonin failed to affect body weight gain or intestinal morphology. Melatonin significantly reduced (by about 60%) the bacterial load in enterotoxigenic Escherichia coli (ETEC)-infected weanling mice, but had little effect on ETEC load in antibiotic-pretreated animals. In conclusion, melatonin affects body weight gain, intestinal morphology, and intestinal ETEC infection through intestinal microbiota in weanling mice. The findings highlight the importance of intestinal microbiota in mediating the various physiological functions of melatonin in the host.


Asunto(s)
Antioxidantes/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Melatonina/farmacología , Estrés Fisiológico/efectos de los fármacos , Animales , Mucosa Intestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA