Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6905, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903795

RESUMEN

Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.


Asunto(s)
Curcumina , ADN Catalítico , MicroARNs , Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Terapia Fototérmica , Curcumina/farmacología , Polietilenglicoles/química , Neoplasias Pancreáticas/terapia , MicroARNs/genética , Oligopéptidos , Línea Celular Tumoral , Nanopartículas/química , Fototerapia/métodos , Neoplasias Pancreáticas
2.
Small ; 19(47): e2304194, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37490549

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) biofilm-associated bacterial keratitis is highly intractable, with strong resistance to ß-lactam antibiotics. Inhibiting the MRSA resistance gene mecR1 to downregulate penicillin-binding protein PBP2a has been implicated in the sensitization of ß-lactam antibiotics to MRSA. However, oligonucleotide gene regulators struggle to penetrate dense biofilms, let alone achieve efficient gene regulation inside bacteria cells. Herein, an eye-drop system capable of penetrating biofilms and targeting bacteria for chemo-gene therapy in MRSA-caused bacterial keratitis is developed. This system employed rolling circle amplification to prepare DNA nanoflowers (DNFs) encoding MRSA-specific aptamers and mecR1 deoxyribozymes (DNAzymes). Subsequently, ß-lactam antibiotic ampicillin (Amp) and zinc oxide (ZnO) nanoparticles are sequentially loaded into the DNFs (ZnO/Amp@DNFs). Upon application, ZnO on the surface of the nanosystem disrupts the dense structure of biofilm and fully exposes free bacteria. Later, bearing encoded aptamer, the nanoflower system is intensively endocytosed by bacteria, and releases DNAzyme under acidic conditions to cleave the mecR1 gene for PBP2a down-regulation, and ampicillin for efficient MRSA elimination. In vivo tests showed that the system effectively cleared bacterial and biofilm in the cornea, suppressed proinflammatory cytokines interleukin 1ß ï¼ˆIL-1ß) and tumor neocrosis factor-alpha (TNF-α), and is safe for corneal epithelial cells. Overall, this design offers a promising approach for treating MRSA-induced keratitis.


Asunto(s)
Queratitis , Staphylococcus aureus Resistente a Meticilina , Óxido de Zinc , Humanos , Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/genética , ADN/metabolismo , Ampicilina/metabolismo , Ampicilina/farmacología , beta-Lactamas/metabolismo , beta-Lactamas/farmacología , Queratitis/tratamiento farmacológico , Queratitis/genética , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo
3.
Front Pharmacol ; 13: 1058799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386125

RESUMEN

Introduction: Chronic heart failure (CHF) is a common cardiovascular disease. In China, Xinbao pill (XBP) is widely used as an adjuvant therapy for CHF. However, there is still a lack of high-quality clinical evidence. We designed this multicenter, randomized, double-blind, placebo-controlled trial to critically evaluate the efficacy and safety of XBP as an adjuvant treatment for patients with CHF. Methods and analysis: We will recruit 284 patients with a clinical diagnosis of "heart-kidney yang deficiency syndrome" CHF receiving treatment in six hospitals in China. Patients will be randomly assigned, in a 1:1 ratio, to the treatment or control group using a central randomization system. All patients will receive conventional drug therapy for heart failure combined XBP (Guangdong Xinbao Pharmaceutical Co., Ltd., Guangdong, China) or a placebo. Study physicians, subjects, outcome assessors, and statisticians will be blinded to the group assignment. The primary outcome will be the change in the proportion of patients who show a decrease in serum NT-proBNP of more than 30% after treatment. Secondary outcomes are NYHA class, 6-minute walk distance test, Minnesota Quality of Life Scale score, endpoint events, serum NT-proBNP, echocardiographic parameters, and traditional Chinese medicine (TCM) symptom score. Adverse events will be monitored throughout the trial. Data will be analyzed according to a predetermined statistical analysis plan. Discussion: The results of this study will provide solid evidence of the safety and efficacy of XBP as an alternative and complementary treatment measure for patients with CHF. Clinical Trial Registration: Chinese Clinical Trial Registration Center (ChiCTR2000038492).

4.
Adv Healthc Mater ; 11(19): e2200960, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35833876

RESUMEN

The major challenges of photothermal therapy (PTT) toward clinical application are the severe skin injury and inflammation response associated with high power laser irradiation. Herein, polydopamine nanoparticles (PDA-EST and PDA-RAL) targeted to estrogen receptor α (ERα) for efficient ablation of breast tumor under a low irradiation density of 0.1 W cm-2 are reported. These nanoparticles are capable of recruiting ERα on their surface and induce a complete ERα degradation via localized heat. Owing to the ERα targetability, PDA-EST and PDA-RAL strongly suppress the proliferation of breast cancer cells without causing significant inflammation. This work provides a generalized method for enhancing PTT efficacy under low irradiation density.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Receptor alfa de Estrógeno , Femenino , Humanos , Indoles , Inflamación , Fototerapia , Polímeros
5.
J Pharm Sci ; 110(11): 3648-3658, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34303675

RESUMEN

Relationship between the stability of fat nano-emulsions and the incorporated drug at the molecular level are rarely known. Herein, fat nano-emulsions containing dihydropyridine drugs were prepared and the microstructure of their palisade layers were investigated.The prepared 1.0 mg/mL nimodipine nano-emulsion was found to contain 65.50% drug in the palisade layer. The increasing drug concentration led to a decrease-increase-decrease trend in centrifugal stability constant, particle size and proton nuclear magnetic resonance (1H NMR) signal intensity of the lecithin trimethyl ammonium group in the nimodipine and felodipine nano-emulsions. The 1H NMR spectra of test solutions including nano-emulsions suggest that increasing drugs penetrated into the palisade layer, resulting in the lecithin arrangement from loose to tight, and then from monolayer to bilayer. Nimodipine and felodipine nano-emulsions showed two valley values at concentrations of 0.15 and 0.75 mg/mL, and 0.30 and 0.90 mg/mL respectively, which indicated that the nano-emulsion has two more stable states corresponding to the tightly arranged mono- and bi-palisade layer. These two concentrations are positively correlated with lipophilicity of nimodipine and felodipine. Further, nimodipine liposomes were prepared to validate the effect of drugs on the arrangement of lecithin in the palisade layer. 1H NMR characterizations of the liposomes showed a similar profile to that of nano-emulsions. These results demonstrated that the increasing drug concentration could cause a rearrangement of lecithin in the palisade layer, thus affecting emulsion stability.


Asunto(s)
Dihidropiridinas , Lecitinas , Estabilidad de Medicamentos , Emulsiones , Tamaño de la Partícula
6.
Oncol Rep ; 28(2): 601-5, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22665077

RESUMEN

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF. However, the effect of wogonin on cisplatin-induced cytotoxicity has not been previously reported. In this study, the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells. Importantly, wogonin robustly induced H2O2 accumulation in these cells, which substantially contributes to the sensitization of cisplatin cytotoxicity by wogonin, as two reactive oxygen species scavengers, butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC), significantly suppressed the potentiated cytotoxicity caused by wogonin and cisplatin co-treatment. The results from this study provide important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/farmacología , Flavanonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Cisplatino/administración & dosificación , Sinergismo Farmacológico , Femenino , Flavanonas/administración & dosificación , Células HeLa , Humanos , Masculino , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
7.
J Food Sci ; 75(7): M503-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21535563

RESUMEN

UNLABELLED: The effects of UV-C radiation on microbial growth in vitro (Monilinia fruticola) and in inoculated Yali pears (Pyrus bretschneideri Rehd.) were investigated. Moreover, postharvest quality and the activities of defense and antioxidant enzymes were analyzed after the pears were exposed to UV-C irradiation at an energy level of 5 kJ m⁻².The results showed that spore germination of M. fructicola was significantly inhibited by each of the 3 doses (1, 5, and 10 kJ m⁻²) in vitro. In the in vivo assays, lesion diameter on the fruit being inoculated before or after the UV-C treatment was both significantly lower than that on the fruit of control. Meanwhile, the activities of phenylalanine ammonia lyase, ß-1,3-glucanase, superoxide dismutase, catalase, and glutathione reductase were induced to high levels by UV-C treatment. We conclude that UV-C treatment could reduce postharvest disease by the germicidal and induced effects and maintain the quality by enhancing the antioxidant enzyme activities. PRACTICAL APPLICATION: UV-C radiation has recently been proposed as a new technology to avoid chemical fungicides. However, there are few studies regarding the effect of UV-C treatment on Yali pear. In this study, we found that 5 kJ m⁻² UV-C irradiation can control postharvest disease and maintain the quality of Yali pear. This method may be applied to reduce the decay of Yali pears during exporting and storage.


Asunto(s)
Irradiación de Alimentos , Frutas/microbiología , Frutas/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Pyrus/microbiología , Pyrus/efectos de la radiación , Ácido Ascórbico/metabolismo , Irradiación de Alimentos/métodos , Frutas/metabolismo , Glucano 1,3-beta-Glucosidasa/metabolismo , Oxidorreductasas/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Proteínas de Plantas/metabolismo , Pyrus/metabolismo , Control de Calidad , Saccharomycetales/aislamiento & purificación , Saccharomycetales/fisiología , Saccharomycetales/efectos de la radiación , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/efectos de la radiación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA