Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 116: 154872, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37209606

RESUMEN

BACKGROUND: Drug-induced liver injury (DILI) is primarily caused by drugs or their metabolites. Acetaminophen (APAP) is an over-the-counter antipyretic analgesic that exhibits high hepatotoxicity when used for long-term or in overdoses. Taraxasterol is a five-ring triterpenoid compound extracted from traditional Chinese medicinal herb Taraxacum officinale. Our previous studies have demonstrated that taraxasterol exerts protective effects on alcoholic and immune liver injuries. However, the effect of taraxasterol on DILI remains unclear. HYPOTHESIS/PURPOSE: This study aimed to elucidate the effects and mechanisms of action of taraxasterol on APAP-induced liver injury using network pharmacology and in vitro and in vivo experiments. METHODS: Online databases of drug and disease targets were used to screen the targets of taraxasterol and DILI, and a protein-protein interaction network (PPI) was constructed. Core target genes were identified using the tool of Analyze of Cytoscape, gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were performed. Oxidation, inflammation and apoptosis were evaluated to determine the effect of taraxasterol on APAP-stimulated liver damage in AML12 cells and mice. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the potential mechanisms of taraxasterol against DILI. RESULTS: Twenty-four intersection targets for taraxasterol and DILI were identified. Among them, 9 core targets were identified. GO and KEGG analysis showed that core targets are closely related to oxidative stress, apoptosis, and inflammatory response. The in vitro findings showed that taraxasterol alleviated mitochondrial damage in AML12 cells treated with APAP. The in vivo results revealed that taraxasterol alleviated pathological changes in the livers of mice treated with APAP and inhibited the activity of serum transaminases. Taraxasterol increased the activity of antioxidants, inhibited the production of peroxides, and reduced inflammatory response and apoptosis in vitro and in vivo. Taraxasterol promoted Nrf2 and HO-1 expression, suppressed JNK phosphorylation, and decreased the Bax/Bcl-2 ratio and caspase-3 expression in AML12 cells and mice. CONCLUSION: By integrating network pharmacology with in vitro and in vivo experiments, this study indicated that taraxasterol inhibits APAP-stimulated oxidative stress, inflammatory response and apoptosis in AML12 cells and mice by regulating the Nrf2/HO-1 pathway, JNK phosphorylation, and apoptosis-related protein expression. This study provides a new evidence for the use of taraxasterol as a hepatoprotective drug.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Triterpenos , Animales , Ratones , Acetaminofén/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Farmacología en Red , Hígado , Triterpenos/farmacología , Triterpenos/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
2.
Food Funct ; 12(14): 6452-6463, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34076007

RESUMEN

Despite the health benefits of Vitis vinifera L. leaves, its anti-obesity potential has not been fully explored. In this work, we showed that Vitis vinifera L. leaf extract (VLE) inhibits the pancreatic lipase activity. Intragastric administration of VLE to mice led to a significant decrease in the body weight, tissue fat accumulation, levels of cholesterol, low-density lipoprotein and triglyceride compared to mice fed with high fat diet. We also found a lower level of neuropeptide-Y (NPY) in the serum and hypothalamus and a higher level of fibroblast growth factor 15 in mice supplemented with VLE. These results suggested that VLE regulates both the NPY-mediated pathway and the bile acid-FGF15 pathway to control energy metabolism and body weight gain. The composition of VLE was further investigated by a targeted metabolomics approach, which identified 21 compounds including phenolic acids, flavones, flavanols, flavanones, coumarins, and stilbenes. Taken together, we demonstrated the capacity of grape leaves in reducing obesity, which could be mediated by NPY and bile acids. Identification of putative active compounds in VLE also open the path for further studies to determine their effectiveness individually to treat obesity.


Asunto(s)
Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Hojas de la Planta/química , Vitis/química , Tejido Adiposo/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Factores de Crecimiento de Fibroblastos/metabolismo , Flavonas/química , Lipasa/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/sangre , Obesidad/metabolismo , Extractos Vegetales/química , Triglicéridos/metabolismo , Aumento de Peso/efectos de los fármacos
3.
Virol J ; 18(1): 123, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107996

RESUMEN

BACKGROUND: The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or "cytomorbidity", as distinct from cytotoxicity or loss of viability. METHODS: A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. RESULTS: The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. CONCLUSIONS: We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives.


Asunto(s)
Antivirales/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Bioensayo , Chlorocebus aethiops , Efecto Citopatogénico Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Concentración 50 Inhibidora , Células Vero , Replicación Viral/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-35003292

RESUMEN

Our previous reports have shown that Inonotus obliquus polysaccharide (IOP) has protective effects against Toxoplasma gondii (T. gondii) infection in vivo. The aim of the present research is to explore the in vitro anti-inflammatory effects of IOP and its mechanism in RAW264.7 macrophages infected by T. gondii. In this study, it is indicated that IOP decreased the excessive secretion of inflammatory cytokines tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-1ß (IL-1ß), IL-4, and IL-6 in T. gondii-infected RAW264.7 macrophages. IOP effectively suppressed the mRNA expression of these cytokines and chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α). Moreover, IOP inhibited the phosphorylation of inhibitor kappa B kinase α/ß (IKKα/ß), inhibitor κBα (IκBα), p65 in nuclear factor-kappa B (NF-κB) signaling pathway and p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) in mitogen-activated protein kinases (MAPKs) signaling pathway. Meantime, IOP prevented NF-κB p65 and c-Jun translocation from the cytoplasm to the nucleus. Further, IOP downregulated the protein expression of toll-like receptor 2 (TLR2) and TLR4 in T. gondii-infected RAW264.7 macrophages. The above results suggest that IOP can inhibit the inflammatory response infected with T. gondii via regulating TLR2/TLR4-NF-κB/MAPKs pathways and exerting its anti-T. gondii role in vitro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA