Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Int ; 173: 107847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36842383

RESUMEN

Naturally occurring oxides could react with zinc oxide (ZnO) nanoparticles (NPs) and then change its transformation and toxicity to ecological receptors. The reaction may be affected by a variety of environmental factors, yet the relevant processes and mechanisms are limitedly investigated. Natural prevalent ligands, as an important factor, can sorb on natural oxide minerals and change its surface property, finally affecting ZnO NP transformation. This study investigated the interactions of ZnO NPs with phosphorus ligands (i.e., phytate and orthophosphate) pre-sorbed γ-alumina (γ-Al2O3) via batch experiments and multi-technique analyses. A limited amount of aqueous Zn2+ is observed when the concentration of ZnO NPs is relatively low (<64.8 mg L-1) in the presence of phytate pre-sorbed γ-Al2O3. Solid Zn(II) species includes binary/ternary surface Zn(II) complexes on γ-Al2O3 with minor amounts of zinc phytate precipitates. As the concentration of ZnO NPs increases, surface Zn(II) complexes gradually transform into zinc phytate and Zn-Al layered double hydroxide (Zn-Al LDH) precipitates. The quantitative analysis indicates that, as the concentration of ZnO NPs increases from 32.4 to 388.8 mg L-1, the proportion of Zn(II) species as binary/ternary surface complexes decreases from 81.9 to 30.2%; and the proportion as zinc phytate and Zn-Al LDH increases from 17.9 to 27.6% and 0 to 43.8%, respectively. The pre-sorption of orthophosphate can also inhibit ZnO NP transformation into Zn-Al LDH precipitates on γ-Al2O3. This study suggests that natural ligands pre-existed on natural oxide minerals could greatly influence the solubility, stability, transformation, and fate of easily dissoluble metal oxides (e.g., ZnO) in the environments.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Aluminio , Fósforo , Ácido Fítico , Zinc , Óxidos , Minerales , Fosfatos
3.
Environ Pollut ; 252(Pt B): 1193-1201, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31252117

RESUMEN

Evaluating the fate and transport of nanoparticles (NPs) in the subsurface environment is critical for predicting the potential risks to both of the human health and environmental safety. It is believed that numerous environmental factors conspire to control the transport dynamics of nanoparticles, yet the effects of organic phosphates on nanoparticles transport remain largely unknown. In this work, we quantified the transport process of TiO2 nanoparticle (nTiO2) and their retention patterns in water-saturated sand columns under various myo-inositol hexakisphosphate (IHP) or phosphate (Pi) concentrations (0-180 µM P), ferrihydrite coating fractions (λ, 0-30%), ionic strengths (1-50 mM KCl), and pH values (4-8). The transport of nTiO2 was enhanced at increased P concentration due to the enhanced colloidal stability. As compared with Pi at the equivalent P level, IHP showed stronger effect on the electrokinetic properties of nTiO2 particles due to its relatively more negative charge and higher adsorption affinity, thereby facilitating the nTiO2 transport (and thus reduced retention) in porous media. At the IHP concentration of 5 µM, the retention of nTiO2 increased with increasing λ and ionic strength, while decreased with pH. In addition, the retention profiles of nTiO2 showed a typical hyperexponential pattern for most scenarios mainly due to the unfavorable attachment, and can be well described by a hybrid mathematical model that coupled convection dispersion equations with a two-site kinetic model and DLVO theory. These quantitative estimations revealed the importance of IHP on affecting the transport of nTiO2 typically in phosphorus-enriched environments. It provides new insights into advanced understanding of the co-transport of nanoparticles and phosphorus in natural systems, essential for both nanoparticle exposure and water eutrophication.


Asunto(s)
Modelos Químicos , Nanopartículas/química , Adsorción , Compuestos Férricos , Concentración de Iones de Hidrógeno , Cinética , Modelos Teóricos , Concentración Osmolar , Fosfatos/química , Fósforo , Ácido Fítico , Porosidad , Cuarzo , Dióxido de Silicio/química , Titanio/química , Agua
4.
Sci Total Environ ; 650(Pt 2): 1980-1987, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30290340

RESUMEN

Zinc and aluminum layered double hydroxides (Zn-Al LDH) are a common group of major Zn species in various Zn-contaminated soil/sediment environments, yet their formation pathways and underlying mechanisms under varied conditions are not well understood. This study investigated the formation of Zn-Al LDHs through the direct interaction of two solid substrates, ZnO nanoparticles (NPs) and a representative Al oxide, γ-Al2O3. Batch experiments and complementary microscopic and spectroscopic analyses were conducted to elucidate the reaction kinetics and mechanisms, as well as the morphologic and structural evolution of the products. Dissolved Zn and Al concentrations decreased significantly in a dual solid system compared to a single solid system. A bulk Zn-Al LDH phase was found to form under a wide pH range (6.5-9.5). Aside from Zn-Al LDH, γ-Al2O3 was the main remaining solid phase at pH 6.5, whereas ZnO NPs were the main residual solid phases at pH 9.5. Formation of amorphous Zn(OH)2 was also observed at both pH values, likely due to Zn2+ release at low pH and Al(OH)4- adsorption at high pH. It is proposed that the formation of Zn-Al LDH occurs via a dissolution-sorption-coprecipitation process, where the solubility of ZnO NPs or γ-Al2O3 solid phases determines the reaction pathways and kinetics under varied pH conditions. The results from this work revealed the transformation mechanisms for ZnO NPs under conditions from weakly acidic to alkaline pH with highly available Al particles and shed light on the environmental fate of ZnO NPs in Zn or ZnO NP contaminated environments.

5.
Environ Sci Technol ; 48(12): 6735-42, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24871399

RESUMEN

Inositol hexakisphosphates are the most abundant organic phosphates (OPs) in most soils and sediments. Adsorption, desorption, and precipitation reactions at environmental interfaces govern the reactivity, speciation, mobility, and bioavailability of inositol hexakisphosphates in terrestrial and aquatic environments. However, surface complexation and precipitation reactions of inositol hexakisphosphates on soil minerals have not been well understood. Here we investigate the surface complexation-precipitation process and mechanism of myo-inositol hexakisphosphate (IHP, phytate) on amorphous aluminum hydroxide (AAH) using macroscopic sorption experiments and multiple spectroscopic tools. The AAH (16.01 µmol m(-2)) exhibits much higher sorption density than boehmite (0.73 µmol m(-2)) and α-Al2O3 (1.13 µmol m(-2)). Kinetics of IHP sorption and accompanying OH(-) release, as well as zeta potential measurements, indicate that IHP is initially adsorbed on AAH through inner-sphere complexation via ligand exchange, followed by AAH dissolution and ternary complex formation; last, the ternary complexes rapidly transform to surface precipitates and bulk phase analogous to aluminum phytate (Al-IHP). The pH level, reaction time, and initial IHP loading evidently affect the interaction of IHP on AAH. In situ ATR-FTIR and solid-state NMR spectra further demonstrate that IHP sorbs on AAH and transforms to surface precipitates analogous to Al-IHP, consistent with the results of XRD analysis. This study indicates that active metal oxides such as AAH strongly mediate the speciation and behavior of IHP via rapid surface complexation-precipitation reactions, thus controlling the mobility and bioavailability of inositol phosphates in the environment.


Asunto(s)
Hidróxido de Aluminio/química , Óxido de Aluminio/química , Precipitación Química , Espectroscopía de Resonancia Magnética , Ácido Fítico/aislamiento & purificación , Adsorción , Aluminio/química , Ambiente , Concentración de Iones de Hidrógeno , Cinética , Fósforo/química , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Temperatura , Difracción de Rayos X
6.
Huan Jing Ke Xue ; 34(11): 4482-9, 2013 Nov.
Artículo en Chino | MEDLINE | ID: mdl-24455963

RESUMEN

The sorption and desorption characteristics of four kinds of organic phosphorus with different molecular structures (glycerophosphate (GP), glucose-6-phosphate (G6P), adenosine triphosphate (ATP), and myo-inositol hexakisphosphate (IHP)) on three kinds of aluminum (oxyhydr)oxides (amorphous Al(OH)3, boehmite, and alpha-Al2O3) were studied. The underlying mechanisms were also illustrated. Results showed that the maximum sorption amounts of OP onto Al (oxyhydr)oxides, on a per gram dry weight basis, decreased as following: amorphous Al(OH)3 > boehmite > alpha-Al2O3. This mainly related to the mineral crystallinity and surface heterogeneity. With the exception of sorption of IHP on amorphous Al (OH)3, the maximum sorption density decreased with increasing molecular weight (MW) of OP, following the order: GP > G6P > ATP > IHP. However, the sorption amount of IHP on amorphous Al (OH)3 was much higher than those of other OP, due to the transformation of surface complexes of IHP to surface precipitation and thus enhancing the sorption. The sorption kinetics results showed that sorption of OP underwent the first onset rapid sorption, i. e. a certain amount of sorption occurred within an onset extremely short period, and a following long and slow sorption process. Amorphous Al (OH)3 had the greatest onset rapid sorption density, and the onset rapid sorption density of OP on Al (oxyhydr) oxides decreased with increasing MW. Desorption capacities of OP by KCl and citrate solutions related to the surface affinity between OP and boehmite. Initial desorption percentages by KCl decreased in the order: G6P (10.53%) > GP(6.91%) > ATP (3.06%) > IHP (0.8%). The maximum desorption percentages of OP by citrate were 4-5 times greater than those by KCl. During resorption process of P by KCl, the maximum desorption rate achieved after a fast desorption in a few hours, followed by diffusion-resorption during which the desorption percentage gradually decreased. Specially, both diffusion-resorption and surface precipitation promoted the resorption of IHP on mineral surface. Conclusively, the strong specific sorption of OP occurs on the surface of Al (oxyhydr) oxides, and molecular structure and size of OP as well as the crystallinity and crystal structure of minerals are the key factors affecting the interfacial reactions and environmental behaviors of OP.


Asunto(s)
Hidróxido de Aluminio/química , Óxido de Aluminio/química , Fósforo/química , Adenosina Trifosfato/química , Adsorción , Glucosa-6-Fosfato/química , Glicerofosfatos/química , Ácido Fítico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA