Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2538-2551, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282883

RESUMEN

To explore the mechanism of the active ingredients of Qishiwei Zhenzhu Pills in inhibiting the hepatorenal toxicity of the zogta component based on serum pharmacochemistry and network pharmacology, thereby providing references for the clinical safety application of Qishiwei Zhenzhu Pills. The small molecular compounds in the serum containing Qishiwei Zhenzhu Pills of mice were identified by high performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS). Then, by comprehensively using Traditional Chinese Medicines Systems Pharmacology(TCMSP), High-throughput Experiment-and Reference-guided Database(HERB), PubChem, GeneCards, SuperPred, and other databases, the active compounds in the serum containing Qishiwei Zhenzhu Pills were retrieved and their action targets were predicted. The predicted targets were compared with the targets of liver and kidney injury related to mercury toxicity retrieved from the database, and the action targets of Qishiwei Zhenzhu Pills to inhibit the potential mercury toxicity of zogta were screened out. Cytoscape was used to construct the active ingredient in Qishiwei Zhenzhu Pills-containing serum-action target network, and STRING database was used to construct the protein-protein interaction(PPI) network of intersection targets. The Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out on the target genes by the DAVID database. The active ingredient-target-pathway network was constructed, and the key ingredients and targets were screened out for molecular docking verification. The results showed that 44 active compounds were identified from the serum containing Qishiwei Zhenzhu Pills, including 13 possible prototype drug ingredients, and 70 potential targets for mercury toxicity in liver and kidney were identified. Through PPI network topology analysis, 12 key target genes(HSP90AA1, MAPK3, STAT3, EGFR, MAPK1, APP, MMP9, NOS3, PRKCA, TLR4, PTGS2, and PARP1) and 6 subnetworks were obtained. Through GO and KEGG analysis of 4 subnetworks containing key target genes, the interaction network diagram of active ingredient-action target-key pathway was constructed and verified by molecular docking. It was found that taurodeoxycholic acid, N-acetyl-L-leucine, D-pantothenic acid hemicalcium, and other active ingredients may regulate biological functions and pathways related to metabolism, immunity, inflammation, and oxidative stress by acting on major targets such as MAPK1, STAT3, and TLR4, so as to inhibit the potential mercury toxicity of zogta in Qishiwei Zhenzhu Pills. In conclusion, the active ingredients of Qishiwei Zhenzhu Pills may have a certain detoxification effect, thus inhibiting the potential mercury toxicity of zogta and playing a role of reducing toxicity and enhancing effect.


Asunto(s)
Medicamentos Herbarios Chinos , Mercurio , Animales , Ratones , Medicina Tradicional Tibetana , Farmacología en Red , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Receptor Toll-Like 4 , Medicina Tradicional China , Medicamentos Herbarios Chinos/toxicidad
2.
Front Pharmacol ; 12: 773562, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867405

RESUMEN

Background: Depression is a stress-related disorder that seriously threatens people's physical and mental health. Xiaoyaosan is a classical traditional Chinese medicine formula, which has been used to treat mental depression since ancient times. More and more notice has been given to the relationship between the occurrence of necroptosis and the pathogenesis of mental disorders. Objective: The purpose of present study is to explore the potential mechanism of Xiaoyaosan for the treatment of depression using network pharmacology and experimental research, and identify the potential targets of necroptosis underlying the antidepressant mechanism of Xiaoyaosan. Methods: The mice model of depression was induced by chronic unpredictable mild stress (CUMS) for 6 weeks. Adult C57BL/6 mice were randomly divided into five groups, including control group, chronic unpredictable mild stress group, Xiaoyaosan treatment group, necrostatin-1 (Nec-1) group and solvent group. Drug intervention performed from 4th to 6th week of modeling. The mice in Xiaoyaosan treatment group received Xiaoyaosan by intragastric administration (0.254 g/kg/d), and mice in CUMS group received 0.5 ml physiological saline. Meanwhile, the mice in Nec-1 group were injected intraperitoneally (i.p.) with Nec-1 (10 mg/kg/d), and the equivalent volume of DMSO/PBS (8.3%) was injected into solvent group mice. The behavior tests such as sucrose preference test, forced swimming test and novelty-suppressed feeding test were measured to evaluate depressive-like behaviors of model mice. Then, the active ingredients in Xiaoyaosan and the related targets of depression and necroptosis were compiled through appropriate databases, while the "botanical drugs-active ingredients-target genes" network was constructed by network pharmacology analysis. The expressions of RIPK1, RIPK3, MLKL, p-MLKL were detected as critical target genes of necroptosis and the potential therapeutic target compounds of Xiaoyaosan. Furthermore, the levels of neuroinflammation and microglial activation of hippocampus were measured by detecting the expressions of IL-1ß, Lipocalin-2 and IBA1, and the hematoxylin and eosin (H&E) stained was used to observe the morphology in hippocampus sections. Results: After 6-weeks of modeling, the behavioral data showed that mice in CUMS group and solvent group had obvious depressive-like behaviors, and the medication of Xiaoyaosan or Nec-1 could improve these behavioral changes. A total of 96 active ingredients in Xiaoyaosan which could regulate the 23 key target genes were selected from databases. Xiaoyaosan could alleviate the core target genes in necroptosis and improve the hippocampal function and neuroinflammation in depressed mice. Conclusion: The activation of necroptosis existed in the hippocampus of CUMS-induced mice, which was closely related to the pathogenesis of depression. The antidepressant mechanism of Xiaoyaosan included the regulation of multiple targets in necroptosis. It also suggested that necroptosis could be a new potential target for the treatment of depression.

3.
Complement Med Res ; 27(1): 47-54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31394544

RESUMEN

BACKGROUND: Xiaoyaosan (XYS) has achieved definite curative effects in clinic. However, the mechanism is not clear. Previous studies of our team indicated XYS improved anxiety-like behaviors through inhibiting c-Jun N-terminal kinase (JNK) signaling pathway of hippocampus. OBJECTIVES: In the study, we explored whether the JNK signaling pathway is involved in the mechanism of XYS treating depression. METHOD: Forty-eight rats were divided randomly into 4 groups (n = 12): the control group (deionized water, p.o.), the model group (deionized water, p.o.), the fluoxetine group (2.08 mg/kg/day, p.o.), and the XYS group (3.9 g/kg/day, p.o.). All rats except for the control group were given continuous 21 days of chronic immobilization stress (CIS; 3 h/day). On day 29, the body weights and the behavioral tests, including the novelty suppressed feeding test, the open field test, and the elevated plus maze test, were measured. On day 30, all the rats were sacrificed, and three indices of the JNK signaling pathway were tested by Western blot. RESULTS: The body weight and behavioral tests of all groups indicated that 21 days of CIS induced depression-like behaviors. After 21 days of treatment with fluoxetine and XYS, changes were seen in body weight, behaviors, and JNK, phosphorylated JNK (P-JNK), and phosphorylated c-Jun (P-c-Jun) levels in the hippocampus. CONCLUSIONS: XYS ameliorated the depression-like behaviors, potentially through affecting the JNK signaling pathway in the hippocampus.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Sistema de Señalización de MAP Quinasas , Animales , Masculino , Ratas , Ratas Sprague-Dawley
4.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663637

RESUMEN

In addition to the standardized use of antidepressant medications and psychotherapy, the usage of traditional Chinese medicine has lead to an overall improvement of patients with major depressive disorder (MDD). Therefore, the purpose of this study was to establish the mouse depressive model, observe the behavior changes associated with chronic unpredictable mild stress (CUMS), and then evaluate the anti-depression effect of Xiaoyaosan. Mice were randomly divided into four groups: a control group, a model group, a treatment group with Xiaoyaosan, and a treatment group with fluoxetine. All mice were individually kept in cages, and depression was induced in the mice by exposing them to several designed manipulations of CUMS for 21 days, as described in the protocol. Mice in the control group and model group received 0.5 mL of distilled water, while mice in the treatment groups received either Xiaoyaosan (0.25 g/kg/day) or fluoxetine (2.6 mg/kg/day). The drugs used in the study were given intragastrically daily during the entire three weeks. To estimate the depressive-like behaviors, a series of parameters including the coat state, body weight, open field test score, and sucrose preference test score were recorded. Data analysis showed that behaviors of model mice were significantly changed compared to behaviors of mice in the control group, which were improved by the treatment of Xiaoyaosan and fluoxetine. The current findings demonstrated the anti-depression effects of Xiaoyaosan on the behaviors of CUMS-induced mice and revealed that compounds from the Xiaoyaosan prescription may be worthwhile for treating depression, considering their beneficial effects on depressive-like behaviors.


Asunto(s)
Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones
5.
Sci Rep ; 7(1): 353, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28336920

RESUMEN

Although the anxiolytic-like effects of Xiaoyaosan, a Chinese herbal formula, have been described in many previous studies, its underlying mechanism remains undefined. The cytokine tumour necrosis factor-α (TNF-α) and its closely associated janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT3) signalling pathway regulate the neuro-inflammatory response in the brain, thus participating in the development of anxiety. Our purpose was to investigate whether the anxiolytic-like effects of Xiaoyaosan are related to the TNF-α/JAK2-STAT3 pathway in the hippocampus. We examined the effects of Xiaoyaosan on behaviours exhibited in the elevated plus maze test, open field test and novelty-suppressed feeding test as well as hippocampal neuron damage and changes in the TNF-α/JAK2-STAT3 pathway in a rat model of chronic immobilization stress (CIS)-induced anxiety. Xiaoyaosan exerts anxiolytic-like effects on CIS-induced anxiety, with a significant alleviation of anxiety-like behaviours, an attenuation of hippocampal neuron damage, and a reversal of the activation of the TNF-α/JAK2-STAT3 pathway in the hippocampus that are similar to the effects of the JAK2 antagonist AG490. However, Xiaoyaosan and AG490 failed to effectively regulate apoptosis-related factors, including Bax and Caspase-3. These results suggest that Xiaoyaosan attenuates stress-induced anxiety behaviours by down-regulating the TNF-α/JAK2-STAT3 pathway in the rat hippocampus.


Asunto(s)
Ansiolíticos/administración & dosificación , Ansiedad/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ansiedad/prevención & control , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Regulación hacia Abajo , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Factor de Necrosis Tumoral alfa/sangre
6.
Artículo en Inglés | MEDLINE | ID: mdl-28348623

RESUMEN

The research has only yielded a partial comprehension of MDD and the mechanisms underlying the antidepressant-like effects of XYS. Therefore, in this study, we aimed to explore the effects of XYS on chronic unpredictable mild stress- (CUMS-) induced changes in the neuronal and the astrocytic markers in the mouse hippocampus. The physical states and depressive-like behaviors in mice with CUMS were recorded. The serum contents of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were measured. The protein and mRNA expressions and the immunoreactivities of glial fibrillary acidic protein (GFAP) and neuronal nuclei (NeuN) in mouse hippocampus were detected using a Western blot, qRT-PCR, and immunohistochemical staining, respectively. XYS treatment markedly improved the physical state and depressive-like behaviors in mice subjected to CUMS compared with the model group, and the serum contents of BDNF and GDNF were significantly upregulated. XYS treatment also elevated the protein and mRNA levels, as well as the immunoreactivity of GFAP in the hippocampus. However, CUMS did not influence NeuN expression. In conclusion, these results reveal that chronic administration of XYS elicits antidepressant-like effects in a mouse model of depression and may normalize glial fibrillary acidic protein expression in the hippocampi of mice with CUMS.

7.
Biol Pharm Bull ; 40(2): 187-194, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154259

RESUMEN

The current study evaluated the effects of Xiao Yao San (XYS) on anxiety-like behaviors and sought to determine whether the c-Jun N-terminal kinase (JNK) signaling pathway is involved. A total of 40 rats were divided into 5 groups (n=8): the control group (deionized water, per os (p.o.)), the model group (deionized water, p.o.), the SP600125 group (surgery), the per se group (surgery), and the XYS group (3.9 g/kg/d, p.o.). A 1% dimethyl sulfoxide (DMSO) citrate buffer solution (2 µL/ventricle/d) and SP600125 (10 µg/ventricle, 2 µL/ventricle/d) were separately and bilaterally injected into the rats of the two surgery groups via the ventricular system of the brain. All but the control group underwent 14 d of chronic immobilization stress (CIS; 3 h/d). On day 15, the body weights of all of the rats were measured; additionally, the rats were subjected to the elevated plus maze (EPM) and novelty suppressed feeding (NSF) tests. Finally, JNK signaling pathway indices, including phosphorylated JNK (P-JNK), JNK, phosphorylated c-Jun (P-c-Jun) and cytochrome C (Cyt-C), were examined. After modeling, the body weight and behavioral analyses of the model rats indicated that this modeling method induced anxiety-like behaviors. P-JNK, JNK, and P-c-Jun were altered in the hippocampus of the model rats. After 14 d of treatment with XYS and SP600125, rat body weight and behaviors as well as P-JNK, JNK, and P-c-Jun had changed. However, no significant difference in Cyt-C was found. XYS improves the anxiety-like behaviors induced by CIS, which might be related to the JNK signaling pathway in the hippocampus.


Asunto(s)
Ansiedad/enzimología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Estrés Psicológico/enzimología , Animales , Ansiedad/tratamiento farmacológico , Enfermedad Crónica , Medicamentos Herbarios Chinos/farmacología , Inmovilización/efectos adversos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/tratamiento farmacológico
8.
Artículo en Inglés | MEDLINE | ID: mdl-27042185

RESUMEN

Background. Compared with antidepressant activity of Xiaoyaosan, the role of Xiaoyaosan in anxiety has been poorly studied. Objective. To observe the effects of Xiaoyaosan on anxiety-like behavior induced by chronic immobilization stress (CIS) and further explore whether these effects were related to CRF1R signaling. Methods. Adult male SD rats were randomly assigned to five groups (n = 12): the nonstressed control group, vehicle-treated (saline, p.o.) group, Xiaoyaosan-treated (3.854 g/kg, p.o.) group, vehicle-treated (surgery) group, and antalarmin-treated (surgery) group. Artificial cerebrospinal fluid (0.5 µL/side) or CRF1R antagonist antalarmin (125 ng/0.5 µL, 0.5 µL/side) was bilaterally administered into the basolateral amygdala in the surgery groups. Except for the nonstressed control group, the other four groups were exposed to CIS (14 days, 3 h/day) 30 minutes after treatment. On days 15 and 16, all animals were subjected to the elevated plus-maze (EPM) and novelty suppressed feeding (NSF) test. We then examined the expression of CRF1R, pCREB, and BDNF in the amygdala. Results. Chronic pretreatment with Xiaoyaosan or antalarmin significantly reversed elevated anxiety-like behavior and the upregulated level of CRF1R and BDNF in the amygdala of stressed rats. pCREB did not differ significantly among the groups. Conclusions. These results suggest that Xiaoyaosan exerts anxiolytic-like effects in behavioral tests and the effects may be related to CRF1R signaling in the amygdala.

9.
Artículo en Inglés | MEDLINE | ID: mdl-26508978

RESUMEN

The mechanism of depression with type 2 diabetes remains elusive, requiring further study. Objective. To evaluate the effect of TCM formula Xiaoyaosan on depressive-like behaviors in rats with type 2 diabetes. Methods. Rats were divided into 5 groups and drugs were administered during the model period of 21 days. The model of depressive-like behaviors in rats with type 2 diabetes was induced by a high fat diet, low doses of STZ injection, and chronic restraint stress for 21 days. The body weight, fasting blood glucose, ITT, OGTT, 5-HT, DA, depression behaviors, and morphological changes of formation were measured and observed. Results. After modeling, marked changes were found in model rats; behavioral analyses of rats indicated that this modeling method negatively impacts locomotor function. In the H&E staining, changes were found predominately in the CA1 and DG subregions of the hippocampus. After 21 days of treatment by fluoxetine and Xiaoyaosan, rats' body weights, behaviors and fasting blood glucose, and hippocampal formation were modified. Conclusions. A new model of depressive-like behaviors in rats with type 2 diabetes was successfully created. Xiaoyaosan and fluoxetine in this study independently contribute to exacerbate the disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA