Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Emerg Med ; 16(1): 52, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635211

RESUMEN

BACKGROUND: Severe hypocalcemia may lead to life-threatening arrhythmias. Denosumab is an effective treatment for osteoporosis that allows long intervals between doses. However, there is a risk of hypocalcemia in some patients. Due to the long half-life of denosumab, emergency physicians caring for patients presenting with symptoms of hypocalcemia may not be aware of the medication, and adverse effects may last longer. CASE PRESENTATION: A 55-year-old woman with a history of systemic lupus erythematosus (SLE) and anxiety disorder called for an ambulance for symptoms of hyperventilation and muscle cramps. After evaluation at the local hospital, she developed pulseless ventricular tachycardia and was resuscitated by defibrillation by the hospital staff. After conversion to sinus rhythm, she was transported to a tertiary center. Upon arrival, pulseless ventricular tachycardia occurred again, and veno-arterial extracorporeal membrane oxygenation (ECMO) and intra-aortic balloon pumping (IABP) were implemented. Laboratory results showed severe hypocalcemia (corrected calcium level of 5.3 mg/dL) whereupon intravenous calcium supplementation was started. She had received the first dose of denosumab (60 mg) by subcutaneous injection 24 days prior to hospitalization. She was eventually weaned from ECMO and IABP support. CONCLUSION: Cardiac arrest due to hypocalcemia is relatively rare but can be fatal. In the present case, hyperventilation may have acutely exacerbated pre-existing hypocalcemia, leading to ventricular tachycardia. The patient had a slightly decreased serum calcium level prior to denosumab. Close monitoring may be preferable after the primary dose of denosumab in selected patients. Emergency physicians caring for patients who may be suffering from symptoms/signs of hypocalcemia must be mindful of medications that have long half-lives and affect electrolyte balance when treating fatal arrhythmia due to hypocalcemia.

2.
Nature ; 612(7940): 512-518, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477539

RESUMEN

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Asunto(s)
Neuronas , Duración del Sueño , Sueño , Vigilia , Animales , Ratones , Electroencefalografía , Neuronas/metabolismo , Neuronas/fisiología , Sueño/genética , Sueño/fisiología , Privación de Sueño/genética , Vigilia/genética , Vigilia/fisiología , Transducción de Señal , Ritmo Delta , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Ácido Glutámico/metabolismo , Sueño de Onda Lenta/genética , Sueño de Onda Lenta/fisiología
3.
Cell Rep Methods ; 2(11): 100336, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36452866

RESUMEN

We recently determined that the excitatory manipulation of Qrfp-expressing neurons in the preoptic area of the hypothalamus (quiescence-inducing neurons [Q neurons]) induced a hibernation-like hypothermic/hypometabolic state (QIH) in mice. To control the QIH with a higher time resolution, we develop an optogenetic method using modified human opsin4 (OPN4; also known as melanopsin), a G protein-coupled-receptor-type blue-light photoreceptor. C-terminally truncated OPN4 (OPN4dC) stably and reproducibly induces QIH for at least 24 h by illumination with low-power light (3 µW, 473 nm laser) with high temporal resolution. The high sensitivity of OPN4dC allows us to transcranially stimulate Q neurons with blue-light-emitting diodes and non-invasively induce the QIH. OPN4dC-mediated QIH recapitulates the kinetics of the physiological changes observed in natural hibernation, revealing that Q neurons concurrently contribute to thermoregulation and cardiovascular function. This optogenetic method may facilitate identification of the neural mechanisms underlying long-term dormancy states such as sleep, daily torpor, and hibernation.


Asunto(s)
Hibernación , Opsinas , Letargo , Animales , Humanos , Ratones , Hibernación/fisiología , Hipotálamo/fisiología , Optogenética , Sueño/fisiología , Letargo/fisiología , Opsinas/genética
4.
Nutrients ; 12(12)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260552

RESUMEN

Ingesting oolong tea or caffeine acutely increases energy expenditure, and oolong tea, but not caffeine, stimulates fat oxidation. The acute effects of caffeine, such as increased heart rate and interference with sleep, diminish over 1-4 days, known as caffeine tolerance. During each 14-day session of the present study, 12 non-obese males consumed oolong tea (100 mg caffeine, 21.4 mg gallic acid, 97 mg catechins and 125 mg polymerized polyphenol), caffeine (100 mg), or placebo at breakfast and lunch. On day 14 of each session, 24-h indirect calorimetry and polysomnographic sleep recording were performed. Caffeine and oolong tea increased fat oxidation by ~20% without affecting energy expenditure over 24-h. The decrease in the respiratory quotient by oolong tea was greater than that by caffeine during sleep. The effect of oolong tea on fat oxidation was salient in the post-absorptive state. These findings suggest a role of unidentified ingredients in oolong tea to stimulate fat oxidation, and this effect is partially suppressed in a postprandial state. Two weeks of caffeine or oolong tea ingestion increased fat oxidation without interfering with sleep. The effects of subacute ingestion of caffeine and oolong tea differed from the acute effects, which is a particularly important consideration regarding habitual tea consumption.


Asunto(s)
Cafeína/farmacología , Metabolismo Energético/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Sueño/efectos de los fármacos , , Adulto , Cafeína/administración & dosificación , Estudios Cruzados , Método Doble Ciego , Humanos , Masculino
5.
Nature ; 583(7814): 109-114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32528181

RESUMEN

Hibernating mammals actively lower their body temperature to reduce energy expenditure when facing food scarcity1. This ability to induce a hypometabolic state has evoked great interest owing to its potential medical benefits2,3. Here we show that a hypothalamic neuronal circuit in rodents induces a long-lasting hypothermic and hypometabolic state similar to hibernation. In this state, although body temperature and levels of oxygen consumption are kept very low, the ability to regulate metabolism still remains functional, as in hibernation4. There was no obvious damage to tissues and organs or abnormalities in behaviour after recovery from this state. Our findings could enable the development of a method to induce a hibernation-like state, which would have potential applications in non-hibernating mammalian species including humans.


Asunto(s)
Metabolismo Energético/fisiología , Hibernación/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Animales , Metabolismo Basal/fisiología , Núcleo Hipotalámico Dorsomedial/citología , Núcleo Hipotalámico Dorsomedial/fisiología , Femenino , Neuronas GABAérgicas/metabolismo , Glutamina/metabolismo , Masculino , Ratones , Consumo de Oxígeno/fisiología
6.
Cereb Cortex ; 30(7): 3977-3990, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32037455

RESUMEN

Sleep exerts modulatory effects on the cerebral cortex. Whether sleep modulates local connectivity in the cortex or only individual neural activity, however, is poorly understood. Here we investigated functional connectivity, that is, covarying activity between neurons, during spontaneous sleep-wake states and during and after sleep deprivation using calcium imaging of identified excitatory/inhibitory neurons in the motor cortex. Functional connectivity was estimated with a statistical learning approach glasso and quantified by "the probability of establishing connectivity (sparse/dense)" and "the strength of the established connectivity (weak/strong)." Local cortical connectivity was sparse in non-rapid eye movement (NREM) sleep and dense in REM sleep, which was similar in both excitatory and inhibitory neurons. The overall mean strength of the connectivity did not differ largely across spontaneous sleep-wake states. Sleep deprivation induced strong excitatory/inhibitory and dense inhibitory, but not excitatory, connectivity. Subsequent NREM sleep after sleep deprivation exhibited weak excitatory/inhibitory, sparse excitatory, and dense inhibitory connectivity. These findings indicate that sleep-wake states modulate local cortical connectivity, and the modulation is large and compensatory for stability of local circuits during the homeostatic control of sleep, which contributes to plastic changes in neural information flow.


Asunto(s)
Corteza Cerebral/fisiología , Privación de Sueño/fisiopatología , Sueño/fisiología , Vigilia/fisiología , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Electroencefalografía , Electromiografía , Homeostasis , Ratones , Microscopía Confocal , Corteza Motora/metabolismo , Corteza Motora/patología , Corteza Motora/fisiología , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Imagen Óptica , Privación de Sueño/metabolismo , Privación de Sueño/patología , Fases del Sueño/fisiología , Sueño REM/fisiología
7.
Sci Rep ; 10(1): 2278, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042079

RESUMEN

Cortical networks exhibit large shifts in spontaneous dynamics depending on the vigilance state. Waking and rapid eye movement (REM) sleep are characterized by ongoing irregular activity of cortical neurons while during slow wave sleep (SWS) these neurons show synchronous alterations between silent (OFF) and active (ON) periods. The network dynamics underlying these phenomena are not fully understood. Additional information about the state of cortical networks can be obtained by evaluating evoked cortical responses during the sleep-wake cycle. We measured local field potentials (LFP) and multi-unit activity (MUA) in the cortex in response to repeated brief optogenetic stimulation of thalamocortical afferents. Both LFP and MUA responses were considerably increased in sleep compared to waking, with larger responses during SWS than during REM sleep. The strongly increased cortical response in SWS is discussed within the context of SWS-associated neuro-modulatory tone that may reduce feedforward inhibition. Responses to stimuli were larger during SWS-OFF periods than during SWS-ON periods. SWS responses showed clear daily fluctuation correlated to light-dark cycle, but no reaction to increased sleep need following sleep deprivation. Potential homeostatic synaptic plasticity was either absent or masked by large vigilance-state effects.


Asunto(s)
Corteza Cerebral/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Tálamo/fisiología , Vigilia/fisiología , Animales , Corteza Cerebral/citología , Electroencefalografía , Masculino , Ratones , Modelos Animales , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética , Fotoperiodo , Tálamo/citología
8.
Keio J Med ; 68(1): 27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30905886

RESUMEN

Although sleep is a ubiquitous behavior in animal species with well-developed central nervous systems, many aspects in the neurobiology of sleep remain mysterious. Our discovery of orexin, a hypothalamic neuropeptide involved in the maintenance of wakefulness, has triggered an intensive research examining the exact role of the orexinergic and other neural pathways in the regulation of sleep/wakefulness. The orexin receptor antagonist suvorexant, which specifically block the endogenous waking system, has been approved as a new drug to treat insomnia. Also, since the sleep disorder narcolepsy-cataplexy is caused by orexin deficiency, orexin receptor agonists are expected to provide mechanistic therapy for narcolepsy; they will likely be also useful for treating excessive sleepiness due to other etiologies.Despite the fact that the executive neurocircuitry and neurochemistry for sleep/wake switching has been increasingly revealed in recent years, the mechanism for homeostatic regulation of sleep, as well as the neural substrate for "sleepiness" (sleep need), remains unknown. To crack open this black box, we have initiated a large-scale forward genetic screen of sleep/wake phenotype in mice based on true somnographic (EEG/EMG) measurements. We have so far screened >8,000 heterozygous ENU-mutagenized founders and established a number of pedigrees exhibiting heritable and specific sleep/wake abnormalities. By combining linkage analysis and the next-generation whole exome sequencing, we have molecularly identified and verified the causal mutation in several of these pedigrees. Biochemical and neurophysiological analyses of these mutations are underway. Since these dominant mutations cause strong phenotypic traits, we expect that the mutated genes will provide new insights into the elusive pathway regulating sleep/wakefulness. Indeed, through a systematic cross-comparison of the Sleepy mutants and sleep-deprived mice, we have recently found that the cumulative phosphorylation state of a specific set of mostly synaptic proteins may be the molecular substrate of sleep need.


Asunto(s)
Cataplejía/genética , Narcolepsia/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Inicio y del Mantenimiento del Sueño/genética , Sueño/fisiología , Vigilia/fisiología , Animales , Azepinas/farmacología , Cataplejía/tratamiento farmacológico , Cataplejía/fisiopatología , Humanos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Hipotálamo/fisiopatología , Ratones , Ratones Transgénicos , Mutación , Narcolepsia/tratamiento farmacológico , Narcolepsia/fisiopatología , Proteínas del Tejido Nervioso/metabolismo , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Polisomnografía , Fármacos Inductores del Sueño/farmacología , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/fisiopatología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Triazoles/farmacología
9.
Brain Nerve ; 70(11): 1255-1263, 2018 Nov.
Artículo en Japonés | MEDLINE | ID: mdl-30416119

RESUMEN

Narcolepsy-cataplexy is a debilitating disorder characterized by excessive daytime sleepiness and cataplexy, a bilateral loss of muscle tone triggered by positive emotions. The disease is caused by the loss of orexin-producing neurons in the hypothalamus. Currently, only symptom-oriented therapies are available for narcolepsy. We have recently discovered a potent, non-peptide orexin type-2 receptor (OX2R) agonist, YNT-185. We show that peripheral administration of YNT-185 significantly ameliorated the narcolepsy symptoms in a mouse model for narcolepsy. No desensitization was observed after repeated administration of YNT-185 with respect to the suppression of cataplexy-like episodes. These results provide a proof -of-concept for mechanistic therapy for narcolepsy-cataplexy using OX2R agonists. Additionally, YNT-185 promoted wakefulness in wild-type mice, suggesting that orexin receptor agonists may be useful for the treatment of excessive daytime sleepiness due to other conditions, such as sleepiness accompanying depression and sleepiness due to side effects of medicines or jet lag/shift work.


Asunto(s)
Compuestos de Anilina/uso terapéutico , Benzamidas/uso terapéutico , Cataplejía/tratamiento farmacológico , Narcolepsia/tratamiento farmacológico , Receptores de Orexina/agonistas , Animales , Modelos Animales de Enfermedad , Desarrollo de Medicamentos , Hipotálamo , Ratones , Vigilia/efectos de los fármacos
10.
Cell Rep ; 24(1): 79-94, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29972793

RESUMEN

The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.


Asunto(s)
Prosencéfalo/embriología , Diferenciación Sexual , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Gónadas/anomalías , Hipotálamo/embriología , Hipotálamo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Diferenciación Sexual/genética , Conducta Sexual Animal , Factores de Transcripción/deficiencia
11.
J Comp Neurol ; 525(18): 3809-3820, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28608460

RESUMEN

The amount, quality, and diurnal pattern of sleep change greatly during development. Developmental changes of sleep/wake architecture are in a close relationship to brain development. The fragmentation of wake episodes is one of the salient features in the neonatal period, which is also observed in mature animals and human individuals lacking neuropeptide orexin/hypocretin signaling. This raises the possibility that developmental changes of lateral hypothalamic orexin neurons are relevant to the development of sleep/wake architecture. However, little information is available on morphological and physiological features of developing orexin neurons. To address the cellular basis for maturation of the sleep/wake regulatory system, we investigated the functional development of orexin neurons in the lateral hypothalamus. The anatomical development as well as the changes in the electrophysiological characteristics of orexin neurons was examined from embryonic to postnatal stages in orexin-EGFP mice. Prepro-orexin promoter activity was detectable at embryonic day (E) 12.0, followed by expression of orexin A after E14.0. The number of orexin neurons and their membrane capacitance reached similar levels to adults by postnatal day (P) 7, while their membrane potentials, firing rates, and action potential waveforms were developed by P21. The hyperpolarizing effect of serotonin, which is a major inhibitory signal for adult orexin neurons, was detected after E18.0 and matured at P1. These results suggest that the expression of orexin peptides precedes the maturation of electrophysiological activity of orexin neurons. The function of orexin neurons gradually matures by 3 weeks after birth, coinciding with maturation of sleep/wake architecture.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo , Neuronas/fisiología , Orexinas/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Estimulación Eléctrica , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipotálamo/citología , Hipotálamo/embriología , Hipotálamo/crecimiento & desarrollo , Técnicas In Vitro , Potenciales de la Membrana/genética , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Orexinas/genética , Técnicas de Placa-Clamp , Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
12.
Proc Natl Acad Sci U S A ; 114(22): 5731-5736, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507129

RESUMEN

Narcolepsy-cataplexy is a debilitating disorder of sleep/wakefulness caused by a loss of orexin-producing neurons in the lateroposterior hypothalamus. Genetic or pharmacologic orexin replacement ameliorates symptoms in mouse models of narcolepsy-cataplexy. We have recently discovered a potent, nonpeptide OX2R-selective agonist, YNT-185. This study validates the pharmacological activity of this compound in OX2R-transfected cells and in OX2R-expressing neurons in brain slice preparations. Intraperitoneal, and intracerebroventricular, administration of YNT-185 suppressed cataplexy-like episodes in orexin knockout and orexin neuron-ablated mice, but not in orexin receptor-deficient mice. Peripherally administered YNT-185 also promotes wakefulness without affecting body temperature in wild-type mice. Further, there was no immediate rebound sleep after YNT-185 administration in active phase in wild-type and orexin-deficient mice. No desensitization was observed after repeated administration of YNT-185 with respect to the suppression of cataplexy-like episodes. These results provide a proof-of-concept for a mechanistic therapy of narcolepsy-cataplexy by OX2R agonists.


Asunto(s)
Compuestos de Anilina/farmacología , Benzamidas/farmacología , Cataplejía/tratamiento farmacológico , Narcolepsia/tratamiento farmacológico , Receptores de Orexina/agonistas , Orexinas/metabolismo , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Promotores de la Vigilia/uso terapéutico , Vigilia/efectos de los fármacos , Compuestos de Anilina/química , Animales , Benzamidas/química , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Orexina/genética , Orexinas/genética , Técnicas de Placa-Clamp , Sueño/efectos de los fármacos
13.
PLoS One ; 12(2): e0172508, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28207892

RESUMEN

Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.


Asunto(s)
Extractos Vegetales/farmacología , Hojas de la Planta/química , Polietilenglicoles/farmacología , Fármacos Inductores del Sueño/farmacología , Sueño/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Sueño/efectos de los fármacos
14.
Sci Rep ; 6: 32453, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585985

RESUMEN

The discovery of leptin substantiated the usefulness of a forward genetic approach in elucidating the molecular network regulating energy metabolism. However, no successful dominant screening for obesity has been reported, which may be due to the influence of quantitative trait loci between the screening and counter strains and the low fertility of obese mice. Here, we performed a dominant screening for obesity using C57BL/6 substrains, C57BL/6J and C57BL/6N, with the routine use of in vitro fertilization. The screening of more than 5000 mutagenized mice established two obese pedigrees in which single nucleotide substitutions in Mc4r and Sim1 genes were identified through whole-exome sequencing. The mutation in the Mc4r gene produces a premature stop codon, and the mutant SIM1 protein lacks transcriptional activity, showing that the haploinsufficiency of SIM1 and MC4R results in obesity. We further examined the hypothalamic neuropeptide expressions in the mutant pedigrees and mice with diet-induced obesity, which showed that each obesity mouse model has distinct neuropeptide expression profiles. This forward genetic screening scheme is useful and applicable to any research field in which mouse models work.


Asunto(s)
Genes Dominantes , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación/genética , Obesidad/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Mapeo Cromosómico , Dieta , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Luciferasas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Neuropéptidos/genética , Neuropéptidos/metabolismo , Obesidad/metabolismo , Obesidad/patología , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 4/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Secuenciación del Exoma
15.
Endocrinology ; 157(1): 195-206, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26492471

RESUMEN

Nicotine is known to affect the metabolism of glucose; however, the underlying mechanism remains unclear. Therefore, we here investigated whether nicotine promoted the central regulation of glucose metabolism, which is closely linked to the circadian system. The oral intake of nicotine in drinking water, which mainly occurred during the nighttime active period, enhanced daily hypothalamic prepro-orexin gene expression and reduced hyperglycemia in type 2 diabetic db/db mice without affecting body weight, body fat content, and serum levels of insulin. Nicotine administered at the active period appears to be responsible for the effect on blood glucose, because nighttime but not daytime injections of nicotine lowered blood glucose levels in db/db mice. The chronic oral treatment with nicotine suppressed the mRNA levels of glucose-6-phosphatase, the rate-limiting enzyme of gluconeogenesis, in the liver of db/db and wild-type control mice. In the pyruvate tolerance test to evaluate hepatic gluconeogenic activity, the oral nicotine treatment moderately suppressed glucose elevations in normal mice and mice lacking dopamine receptors, whereas this effect was abolished in orexin-deficient mice and hepatic parasympathectomized mice. Under high-fat diet conditions, the oral intake of nicotine lowered blood glucose levels at the daytime resting period in wild-type, but not orexin-deficient, mice. These results indicated that the chronic daily administration of nicotine suppressed hepatic gluconeogenesis via the hypothalamic orexin-parasympathetic nervous system. Thus, the results of the present study may provide an insight into novel chronotherapy for type 2 diabetes that targets the central cholinergic and orexinergic systems.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cronoterapia de Medicamentos , Gluconeogénesis/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hígado/efectos de los fármacos , Nicotina/administración & dosificación , Orexinas/agonistas , Animales , Cruzamientos Genéticos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Hiperglucemia/prevención & control , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico , Hipotálamo/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Nicotina/uso terapéutico , Agonistas Nicotínicos/administración & dosificación , Agonistas Nicotínicos/uso terapéutico , Obesidad/complicaciones , Obesidad/etiología , Orexinas/genética , Orexinas/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
16.
Diabetes ; 64(2): 459-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25249578

RESUMEN

Circadian rhythm is crucial for preventing hepatic insulin resistance, although the mechanism remains uncovered. Here we report that the wake-active hypothalamic orexin system plays a key role in this regulation. Wild-type mice showed that a daily rhythm in blood glucose levels peaked at the awake period; however, the glucose rhythm disappeared in orexin knockout mice despite normal feeding rhythm. Central administration of orexin A during nighttime awake period acutely elevated blood glucose levels but subsequently lowered daytime glucose levels in normal and diabetic db/db mice. The glucose-elevating and -lowering effects of orexin A were suppressed by adrenergic antagonists and hepatic parasympathectomy, respectively. Moreover, the expression levels of hepatic gluconeogenic genes, including Pepck, were increased and decreased by orexin A at nanomolar and femtomolar doses, respectively. These results indicate that orexin can bidirectionally regulate hepatic gluconeogenesis via control of autonomic balance, leading to generation of the daily blood glucose oscillation. Furthermore, during aging, orexin deficiency enhanced endoplasmic reticulum (ER) stress in the liver and caused impairment of hepatic insulin signaling and abnormal gluconeogenic activity in pyruvate tolerance test. Collectively, the daily glucose rhythm under control of orexin appears to be important for maintaining ER homeostasis, thereby preventing insulin resistance in the liver.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Ritmo Circadiano , Hipotálamo/metabolismo , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/farmacología , Hígado/efectos de los fármacos , Neuropéptidos/farmacología , Animales , Glucemia , Epinefrina/farmacología , Genes Transgénicos Suicidas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuropéptidos/genética , Neuropéptidos/metabolismo , Neurotransmisores/farmacología , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
17.
Am J Physiol Regul Integr Comp Physiol ; 307(8): R978-89, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25324552

RESUMEN

Thermogenesis in brown adipose tissue (BAT) contributes to substantial increases in body temperature evoked by threatening or emotional stimuli. BAT thermogenesis also contributes to increases in body temperature that occur during active phases of the basic rest-activity cycle (BRAC), as part of normal daily life. Hypothalamic orexin-synthesizing neurons influence many physiological and behavioral variables, including BAT and body temperature. In conscious unrestrained animals maintained for 3 days in a quiet environment (24-26°C) with ad libitum food and water, we compared temperatures in transgenic rats with ablation of orexin neurons induced by expression of ataxin-3 (Orx_Ab) with wild-type (WT) rats. Both baseline BAT temperature and baseline body temperature, measured at the onset of BRAC episodes, were similar in Orx_Ab and WT rats. The time interval between BRAC episodes was also similar in the two groups. However, the initial slopes and amplitudes of BRAC-related increases in BAT and body temperature were reduced in Orx_Ab rats. Similarly, the initial slopes and amplitudes of the increases in BAT temperatures induced by sudden exposure to an intruder rat (freely moving or confined to a small cage) or by sudden exposure to live cockroaches were reduced in resident Orx_Ab rats. Constriction of the tail artery induced by salient alerting stimuli was also reduced in Orx_Ab rats. Our results suggest that orexin-synthesizing neurons contribute to the intensity with which rats interact with the external environment, both when the interaction is "spontaneous" and when the interaction is provoked by threatening or salient environmental events.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Ambiente , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Neuropéptidos/fisiología , Termogénesis/fisiología , Animales , Ataxina-3 , Conducta Animal/fisiología , Temperatura Corporal/fisiología , Cucarachas , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Modelos Animales , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Orexinas , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Flujo Sanguíneo Regional/fisiología , Descanso/fisiología , Cola (estructura animal)/irrigación sanguínea
18.
Cell Metab ; 19(6): 927-40, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24794976

RESUMEN

Orexin neuropeptides promote arousal, appetite, reward, and energy expenditure. However, whether orexin affects bone mass accrual is unknown. Here, we show that orexin functions centrally through orexin receptor 2 (OX2R) in the brain to enhance bone formation. OX2R null mice exhibit low bone mass owing to elevated circulating leptin, whereas central administration of an OX2R-selective agonist augments bone mass. Conversely, orexin also functions peripherally through orexin receptor 1 (OX1R) in the bone to suppress bone formation. OX1R null mice exhibit high bone mass owing to a differentiation shift from marrow adipocyte to osteoblast that results from higher osseous ghrelin expression. The central action is dominant because bone mass is reduced in orexin null and OX1R2R double null mice but enhanced in orexin-overexpressing transgenic mice. These findings reveal orexin as a critical rheostat of skeletal homeostasis that exerts a yin-yang dual regulation and highlight orexin as a therapeutic target for osteoporosis.


Asunto(s)
Densidad Ósea/fisiología , Remodelación Ósea/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuropéptidos/metabolismo , Receptores de Orexina/metabolismo , Osteogénesis/fisiología , Animales , Densidad Ósea/genética , Diferenciación Celular/fisiología , Células Cultivadas , Ghrelina/biosíntesis , Leptina/sangre , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Receptores de Orexina/agonistas , Receptores de Orexina/genética , Orexinas , Interferencia de ARN , ARN Interferente Pequeño
19.
PLoS One ; 8(4): e62391, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23620827

RESUMEN

Both orexin and neurotensin are expressed in the lateral hypothalamic area (LHA) and have been implicated in the regulation of feeding, motor activity and the reward system. A double label immunofluorescence and in situ hybridization studies showed that neurotensin colocalizes with orexin in neurons of the LHA. Pharmacological studies suggested that neurotensin excites orexin-producing neurons (orexin neurons) through activation of neurotensin receptor-2 (NTSR-2) and non-selective cation channels. In situ hybridization study showed that most orexin neurons express neurotensin receptor-2 mRNA but not neurotensin receptor-1 (Ntsr-1) mRNA. Immunohistochemical studies showed that neurotensin-immunoreactive fibers make appositions to orexin neurons. A neurotensin receptor antagonist decreased Fos expression in orexin neurons and wakefulness time in wild type mice when administered intraperitoneally. However, the antagonist did not evoke any effect on these parameters in orexin neuron-ablated mice. These observations suggest the importance of neurotensin in maintaining activity of orexin neurons. The evidence presented here expands our understanding of the regulatory mechanism of orexin neurons.


Asunto(s)
Hipotálamo/citología , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neurotensina/metabolismo , Sueño , Vigilia , Animales , Hipotálamo/efectos de los fármacos , Activación del Canal Iónico , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neurotensina/antagonistas & inhibidores , Orexinas , Pirazoles/farmacología , Quinolinas/farmacología , Receptores de Neurotensina/metabolismo , Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA