Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cardiovasc Electrophysiol ; 34(11): 2273-2282, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37694672

RESUMEN

BACKGROUND: Substrate-based ablation can treat uninducible or hemodynamically instability scar-related ventricular tachycardia (VT). However, whether a correlation exists between the critical VT isthmus and late activation zone (LAZ) during sinus rhythm (SR) is unknown. OBJECTIVE: To demonstrate the structural and functional properties of abnormal substrates and analyze the link between the VT circuit and abnormal activity during SR. METHODS: Thirty-six patients with scar-related VT (age, 50.0 ± 13.7 years and 86.1% men) who underwent VT ablation were reviewed. The automatic rhythmia ultrahigh resolution mapping system was used for electroanatomic substrate mapping. The clinical characteristics and mapping findings, particularly the LAZ characteristics during SR and VT, were analyzed. To determine the association between the LAZ during the SR and VT circuits, the LAZ was defined as five activation patterns: entrance, exit, core, blind alley, and conduction barrier. RESULTS: Forty-five VTs were induced in 36 patients, 91.1% of which were monomorphic. The LAZ of all patients was mapped during the SR and VT circuits, and the consistency of the anatomical locations of the LAZ and VT circuits was analyzed. Using the ultrahigh resolution mapping system, interconversion patterns, including the bridge, T, puzzle, maze, and multilayer types, were identified. VT ablation enabled precise ablation of abnormal late potential conduction channels. CONCLUSION: Five interconversion patterns of the LAZ during the SR and VT circuits were summarized. These findings may help formulate more precise substrate-based ablation strategies for scar-related VT and shorter procedure times.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Masculino , Humanos , Adulto , Persona de Mediana Edad , Femenino , Cicatriz , Técnicas Electrofisiológicas Cardíacas , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiología , Taquicardia Ventricular/cirugía , Frecuencia Cardíaca , Factores de Tiempo , Ablación por Catéter/efectos adversos
2.
Front Neurol ; 14: 1093849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36756246

RESUMEN

Neurogenic pain rises because of nervous system damage or dysfunction and is the most difficult to treat among other pathological pains. Acupuncture has been reported as a great treatment option for neurogenic pain owing to its unlimited advantages. However, previous studies on the analgesic effects of acupuncture for NP were scattered and did not form a whole. In this study, we first comprehensively review the relevant basic articles on acupuncture for NP published in the last 5 years and summarize the analgesic mechanisms of acupuncture in terms of nerve signaling, neuro-immune crosstalk, and metabolic and oxidative stress regulation. Acupuncture inhibits the upstream excitatory system and suppresses neuronal transmission efficiency by downregulating glutamate, NMDA receptors, P2XR, SP, CGRP, and other neurotransmitters and receptors in the spinal cord, as well as plasma channels such as TRPV1, HCN. It can also activate the downstream pain inhibitory pathway by upregulating opioid peptide (ß-endorphin), MOR receptors, GABA and GABA receptors, bi-directional regulating 5-hydroxytryptamine (5-HT) and its receptors (upregulate 5-HT 1A and downregulate 5-HT7R) and stimulating hypothalamic appetite-modifying neurons. Moreover, neuroinflammation in pain can be inhibited by acupuncture through inhibiting JAK2/STAT3, PI3K/mTOR pathways, down regulating chemokine receptor CX3CR1 on microglia and up regulating adenosine receptor A1Rs on astrocytes, inhibiting the activation of glia and reducing TNF-α and other inflammatory substances. Acupuncture also inhibits neuronal glucose metabolism by downregulating mPFC's GLUT-3 and promotes metabolic alterations of the brain, thus exerting an analgesic effect. In conclusion, the regulation of nerve signal transduction and neuroimmune crosstalk at the peripheral and central levels mediates the analgesic effects of acupuncture for neuropathic pain in an integrated manner. These findings provide a reliable basis for better clinical application of acupuncture in the management of neuropathic pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA