Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Reprod Immunol ; 153: 103666, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970081

RESUMEN

Recurrent spontaneous abortion (RSA) is a disturbing pregnancy disorder experienced by ~2.5% of women attempting to conceive. The pathogenesis of RSA is still unclear. Previous findings revealed that transcription factor YIN-YANG 1(YY1) was related to the pathogenesis of RSA by influence trophoblastic cell invasion ability. Present study aimed to investigate more specific molecular mechanism of YY1 playing in trophoblastic cells. In our research, RNA-seq and Chip-seq were used to find significant changed genes between si-YY1(Knock down of YY1) HTR-8/SVneo cells(n = 3) and HTR-8/SVneo cells(n = 3). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results suggested that Integrins related pathway maybe necessary to biological functions of trophoblastic cells. Chip-seq dataset analysis results predict YY1 can regulate ITGA3/7 expression by binding to the promoter region of ITGA3/7. Furthermore, results from chip experiment, RT-PCR, Dual-luciferase reporter gene assay showed that YY1 was able to bind to the promoter region of ITGA3 and regulate ITGA3 mRNA and protein expression. However, ITGA7 could not be significant influenced by YY1. Besides, gene silencing experiment, Western blot and Immunofluorescence assay confirmed that both YY1 and ITGA3 can accelerate phosphorylation focal adhesion kinase and affect cytoskeleton formation in HTR-8/SVneo cells. In conclusion, YY1/ITGA3 play a critical role in trophoblast invasion ability by regulating cytoskeleton formation.


Asunto(s)
Aborto Habitual , Citoesqueleto , Integrina alfa3 , Trofoblastos , Factor de Transcripción YY1 , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patología , Movimiento Celular/genética , Proliferación Celular/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Integrina alfa3/genética , Integrina alfa3/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
2.
Lab Chip ; 21(20): 4005-4015, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34476431

RESUMEN

Rapid and personalized single-cell drug screening testing plays an essential role in acute myeloid leukemia drug combination chemotherapy. Conventional chemotherapeutic drug screening is a time-consuming process because of the natural resistance of cell membranes to drugs, and there are still great challenges related to using technologies that change membrane permeability such as sonoporation in high-throughput and precise single-cell drug screening with minimal damage. In this study, we proposed an acoustic streaming-based non-invasive single-cell drug screening acceleration method, using high-frequency acoustic waves (>10 MHz) in a concentration gradient microfluidic device. High-frequency acoustics leads to increased difficulties in inducing cavitation and generates acoustic streaming around each single cell. Therefore, single-cell membrane permeability is non-invasively increased by the acoustic pressure and acoustic streaming-induced shear force, which significantly improves the drug uptake process. In the experiment, single human myeloid leukemia mononuclear (THP-1) cells were trapped by triangle cell traps in concentration gradient chips with different cytarabine (Ara-C) drug concentrations. Due to this dual acoustic effect, the drugs affect cell viability in less than 30 min, which is faster than traditional methods (usually more than 24 h). This dual acoustic effect-based drug delivery strategy has the potential to save time and reduce the cost of drug screening, when combined with microfluidic technology for multi-concentration drug screening. This strategy offers enormous potential for use in multiple drug screening or efficient drug combination screening in individualized/personalized treatments, which can greatly improve efficiency and reduce costs.


Asunto(s)
Acústica , Leucemia Mieloide Aguda , Permeabilidad de la Membrana Celular , Supervivencia Celular , Evaluación Preclínica de Medicamentos , Humanos
3.
J Cell Physiol ; 235(10): 6637-6646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32003019

RESUMEN

Insufficient trophoblast invasion is the key factor for the occurrence of recurrent spontaneous abortions (RSA). Our previous studies identified Yin Yang 1 (YY1) as a transcription factor involved in the regulation of trophoblast invasiveness at the maternal-fetal interface. Long noncoding RNAs (lncRNAs) can regulate gene expression and autophagy in many ways. The purpose of this study was to explore the relationship between YY1 and lncRNAs and the mechanism by which lncRNAs affect the biological behavior of trophoblasts. Bioinformatic analysis predicted that YY1 had three binding sites in the plasmacytoma variant translocation 1 (PVT1) promoter region. Chromatin immunoprecipitation experiments and electrophoretic mobility shift assays verified that YY1 can directly bind to the PVT1 promoter. Compared with its expression levels in human placental villi tissue samples from the normal pregnancy group, the PVT1 expression levels were significantly lower in tissues from the RSA group. PVT1 knockdown significantly reduced adhesion, invasion, autophagy, and mTOR expression in HTR-8/SVneo cells and greatly increased apoptosis in vitro. This study revealed a novel regulatory pathway in which YY1 can act directly on PVT1 promoter to regulate its transcription, which further affects trophoblast invasion and adhesion by regulating autophagy via the mTOR pathway, and these effects might be involved in RSA pathogenesis.


Asunto(s)
Autofagia/genética , Adhesión Celular/genética , ARN Largo no Codificante/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Trofoblastos/fisiología , Factor de Transcripción YY1/genética , Aborto Habitual/genética , Adulto , Apoptosis/genética , Autofagia/fisiología , Adhesión Celular/fisiología , Línea Celular , Movimiento Celular/genética , Femenino , Regulación de la Expresión Génica/genética , Humanos , Embarazo , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA