Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 25(16)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823713

RESUMEN

This current study investigates the facilitative effects and mechanisms of decursin, a major component of Angelica gigas Nakai (AGN), and AGN root extract on hair growth in mice. We perform high-performance liquid chromatography on AGN extract to show it contains 7.3% decursin. Hairs in mouse dorsal skin are shaved distilled in water, 0.15% decursin, and 2% AGN root extract (0.15% decursin in the diluted extract) and topically applied twice a day for 17 days. Hematoxylin and eosin staining are done to examine the morphological changes in the hair follicles. To compare the effects of decursin and AGN extract on inflammatory cytokines in the dorsal skin, Western blot analysis and immunohistochemistry for tumor necrosis factor α (TNF-α) and interleukin (IL)-1ß as pro-inflammatory cytokines, and IL-4 and IL-13 as anti-inflammatory cytokines are conducted. The results show that the application of decursin and AGN extract confer effects on hair growth. Hair growth is significantly facilitated from seven days after the treatments compared to that in the control group, and completely grown hair was found 17 days after the treatments. The protein levels and immunoreactivity of TNF-α and IL-1ß in this case are significantly decreased, whereas the IL-4 and IL-13 levels and immunoreactivity are significantly increased compared to those in the control group. Additionally, high-mobility group box 1, an inflammatory mediator, is elevated by the topical application of decursin and AGN extract. Taken together, the treatment of mouse dorsal skin with AGE root extract containing decursin promotes hair growth by regulating pro- and/or anti-inflammatory cytokines. We, therefore, suggest that AGN root extract as well as decursin can be utilized as materials for developing hair growth-facilitating treatments.


Asunto(s)
Angelica/química , Benzopiranos/farmacología , Butiratos/farmacología , Citocinas/metabolismo , Cabello/efectos de los fármacos , Extractos Vegetales/farmacología , Raíces de Plantas/química , Piel/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteína HMGB1/metabolismo , Cabello/crecimiento & desarrollo , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Piel/citología , Piel/metabolismo
2.
Nutrients ; 12(8)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824513

RESUMEN

Pycnogenol® (an extract of the bark of French maritime pine tree) is used for dietary supplement and known to have excellent antioxidative efficacy. However, there are few reports on neuroprotective effect of Pycnogenol® supplementation and its mechanisms against ischemic injury following transient forebrain ischemia (TFI) in gerbils. Now, we examined neuroprotective effect and its mechanisms of Pycnogenol® in the gerbils with 5-min TFI, which evokes a significant death (loss) of pyramidal cells located in the cornu ammonis (CA1) region of gerbil hippocampus from 4-5 days post-TFI. Gerbils were pretreated with 30, 40, and 50 mg/kg of Pycnogenol® once a day for 7 days before TFI surgery. Treatment with 50 mg/kg, not 30 or 40 mg/kg, of Pycnogenol® potently protected learning and memory, as well as CA1 pyramidal cells, from ischemic injury. Treatment with 50 mg/kg Pycnogenol® significantly enhanced immunoreactivity of antioxidant enzymes (superoxide dismutases and catalase) in the pyramidal cells before and after TFI induction. Furthermore, the treatment significantly reduced the generation of superoxide anion, ribonucleic acid oxidation and lipid peroxidation in the pyramidal cells. Moreover, interestingly, its neuroprotective effect was abolished by administration of sodium azide (a potent inhibitor of SODs and catalase activities). Taken together, current results clearly indicate that Pycnogenol® supplementation can prevent neurons from ischemic stroke through its potent antioxidative role.


Asunto(s)
Antioxidantes , Región CA1 Hipocampal/citología , Suplementos Dietéticos , Flavonoides/administración & dosificación , Flavonoides/farmacología , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/patología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Fármacos Neuroprotectores , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Animales , Catalasa/metabolismo , Modelos Animales de Enfermedad , Gerbillinae , Peroxidación de Lípido/efectos de los fármacos , Masculino , Células Piramidales/enzimología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA