Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 139: 108921, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37385461

RESUMEN

This study aimed to evaluate the effects of dietary supplementation with Bacillus velezensis R-71003 combined with sodium gluconate on antioxidant capacity, immune response and resistance against Aeromonas hydrophila in common carp. In addition, the biocontrol potential of the secondary metabolites of B. velezensis R-71003 was also evaluated to analyze the possible mechanism of B. velezensis R-71003 against A. hydrophila. The results indicated that the antibacterial crude extract of B. velezensis R-71003 can destroy the cell wall of A. hydrophila. Moreover, the results showed that dietary B. velezensis R-71003 could promote antioxidant capacity, which significantly increased the activities of CAT and SOD and decreased the content of MDA. Additionally, B. velezensis R-71003 supplementation significantly enhanced the immunity of common carp, as measured by the mRNA expression levels of cytokine-related genes (TNF-α, TGF-ß, IL-1ß and IL-10). In addition, dietary B. velezensis R-71003 exhibited an upregulation of IL-10 and a downregulation of IL-1ß, coupled with higher survival rates when challenged with A. hydrophila compared to the positive group. Furthermore, compared to prechallenge, the mRNA expression levels of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB in the head kidney of common carp were significantly increased after challenge. The fish fed the B. velezensis R-71003 diet showed lower expression of TLR-4, MyD88, IRAK1, TRAF6, TRIF and NF-κB after the challenge than those fed the control diet. Thus, this study revealed that B. velezensis R-71003 can improve the resistance of common carp to pathogenic bacteria by destroying bacterial cell walls and improving fish immunity by activating the TLR4 signaling pathway. Importantly, this study indicated that sodium gluconate has a positive effect on B. velezensis R-71003 in enhancing the anti-infection ability of common carp. The results of this study will lay the foundation for the application of B. velezensis R-71003 in combination with sodium gluconate as an alternative to antibiotics in aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Interleucina-10/metabolismo , Aeromonas hydrophila/fisiología , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4 , Resistencia a la Enfermedad , Dieta/veterinaria , ARN Mensajero , Carpas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Alimentación Animal/análisis
2.
Fish Physiol Biochem ; 46(5): 1665-1677, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32447624

RESUMEN

Hepatic lipid metabolism disorder due to excessive fat accumulation in fish is a significant problem in aquaculture. Studies have shown that grape seed procyanidin extract (GSPE) can regulate fish lipid metabolism and improve fish immunity. However, the mechanism is unclear. In this study, we used grass carp that stores excess fat in the liver as a model. In vitro, GSPE treatment of hepatocytes for 3 h significantly decreased TG content, accompanied with decreased expression of SREBP-1c, FAS, and ACC and increased expression of PPARα, ATGL, and LPL. GSPE treatment for 1 h significantly decreased expression of pro-inflammatory cytokines (TNFα, IL-6, IL-1ß, and NF-κB) and increased the expression of anti-inflammatory cytokines (IL-10 and TGF-ß1). In vivo, the administration of GSPE significantly reduced high-fat diet-induced increase of serum CHOL, TG, and HDL, but increased LDL content. GSPE treatment for 3 h increased expression of ATGL and LPL, and significantly decreased the expression of HFD-fed-induced SREBP-1c, ACC, FAS, PPARγ, PPARα, and H-FABP. GSPE treatment for 3 h also significantly decreased the expression of pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß) and increased the expression of the anti-inflammatory cytokine IL-10. The expression levels of the lipogenic miRNAs, miR-33, and miR-122, were suppressed both in vivo and in vitro by GSPE. In summary, GSPE had hypolipidemic and potential anti-inflammatory effects in the liver, potentially mediated by miR-33 and miR-122.


Asunto(s)
Carpas , Extracto de Semillas de Uva/química , Inflamación/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Extractos Vegetales/farmacología , Proantocianidinas/química , Animales , Hepatocitos/efectos de los fármacos , Inflamación/inducido químicamente , Ácido Oléico/toxicidad , Extractos Vegetales/química
3.
Fish Shellfish Immunol ; 95: 528-537, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31678187

RESUMEN

The Chinese yam peel (CYP) is a by-product of yam processing that is rich in various nutrients and a good source for feed additives. This study investigated the effects of CYP on the intestinal microbiota and gut defence barrier of the common carp (Cyprinus carpio L.). Different groups of experimental fish were fed a normal control diet (NC), a low CYP diet (LYP) and a high CYP diet (HYP) for 8 weeks. After the feeding trial, the fish were assessed for intestinal enzyme activity, intestinal histology, immune-related gene expression, intestinal SCFAs and intestinal microbiota. Our results indicated that the intestinal integrity and antioxidant enzyme (CAT and SOD) activity in the common carp were enhanced following CYP supplementation. The mRNA levels of anti-inflammatory (TGF-ß), tight binding protein (occludin and ZO-1) and pathway factor genes (TLR4 and NF-κB) were significantly upregulated in the HYP group (P<0.05), which was accompanied by an increase in the level of pro-inflammatory IL-1ß in the gut (P<0.05). High-throughput sequencing revealed that Fusobacteria, Proteobacteria, and Bacteroidetes bacteria were most abundant in the microbial community in the gut of the common carp. The relative abundances of Bacteroides, Flavobacterium and Lactobacillus were increased, while the abundances of pathogenic microorganisms such as Enterobacteriaceae, Shewanella, Pseudomonas and Vibrio were reduced after treatment with CYP. Furthermore, the concentrations of acetic acid, propionic acid, butyric acid and total short-chain fatty acids (SCFAs) in the gut were also increased (P<0.05). Finally, our results revealed correlations between gut microbiota, SCFAs, non-specific immunity and antioxidant enzymes in CYP-fed carp. These results suggest that CYP-supplemented feed could improve the immunity of the common carp by modulating the intestinal microflora and enhancing the gut defence barrier and has the potential to be used as an immunostimulating feed additive in aquaculture.


Asunto(s)
Alimentación Animal/análisis , Carpas/inmunología , Suplementos Dietéticos/análisis , Dioscorea/química , Microbioma Gastrointestinal , Animales , Acuicultura
4.
Fish Physiol Biochem ; 45(5): 1563-1573, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31102099

RESUMEN

This study investigated the effects of honeysuckle extract (Lonicera japonica, HE) on the growth performance and lipid metabolism of juvenile grass carp (Ctenopharyngodon idella). HE at doses of 10 g kg-1 (LHE), 20 g kg-1 (MHE), and 40 g kg-1 (HHE) were individually mixed with the basal diet and fed to grass carp for 10 weeks, and ginseng extract (20 g kg-1, GSE) was used as a positive control. The results showed that HE administration exerted no effect on growth performance, but the hepatosomatic index (HSI) and muscle and liver lipid contents were significantly decreased in the LHE and MHE groups. The serum levels of LDL-c, total triglyceride (TG) and total cholesterol (TC) also declined in the HE-treated groups. Moreover, the disordered vacuolization and nucleus migration in the liver were alleviated in the MHE and HHE groups, and mRNA expressions of lipogenesis-related genes, such as acc1, fas, srebp1, and pparγ decreased. Similarly, the expression of genes related to lipolysis, such as cpt1, atgl, lpl, and pparα, was found to be significantly increased in the MHE and HHE groups compared with the control. Taken together, HE can effectively improve the lipid metabolism and ameliorate the lipid deposition of grass carp and thus may be a promising feed additive in aquaculture.


Asunto(s)
Carpas/crecimiento & desarrollo , Carpas/metabolismo , Lonicera/química , Extractos Vegetales/farmacología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Extractos Vegetales/química
5.
J Mol Endocrinol ; 58(4): 179-191, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28283578

RESUMEN

CTRP9 is a member of the C1q/TNF-related protein (CTRP) superfamily and has been studied in mammals, whereas the comparative studies of CTRP9 in non-mammalian species are still absent. In this study, ctrp9 was isolated and characterized from the orange-spotted grouper (Epinephelus coioides). The full-length cDNA of ctrp9 was 1378 bp in size with an ORF (open reading frame) of 1020 bp that encodes a 339 amino acid pre-pro hormone. The mRNA expression of ctrp9 showed a rather high level in the kidney and brain, but a low level in other tissues. Furthermore, the mRNA expression of ctrp9 decreased significantly in the liver after fasting for 7 days and restored to the normal levels after refeeding. In contrast, the ctrp9 mRNA level increased in the hypothalamus after fasting. The recombinant gCtrp9 (globular Ctrp9) was prepared using the Pichia pastoris expression system and was verified by Western blot as well as mass spectrometry assays. In the primary hepatocytes culture, the recombinant gCtrp9 could inhibit the glucose production after 12-h treatment. After i.p. (intraperitoneal) injection with recombinant gCtrp9, in hypothalamus, mRNA expression levels of npy and orexin (orexigenic factors) decreased, whereas the expression levels of crh and pomc (anorexigenic factors) increased. Moreover, i.p. injection with the recombinant gCtrp9 could reduce the serum concentrations of glucose, TG and low-density lipoprotein cholesterol but increase the content of high-density lipoprotein cholesterol. Our studies for the first time unveil the structure of Ctrp9 and its potential role as a regulatory factor of metabolism and food intake in teleost.


Asunto(s)
Adiponectina/genética , Ingestión de Alimentos/genética , Proteínas de Peces/genética , Hepatocitos/metabolismo , Hipotálamo/metabolismo , Perciformes/genética , Adiponectina/metabolismo , Adiponectina/farmacología , Secuencia de Aminoácidos , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Riñón/metabolismo , Hígado/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Sistemas de Lectura Abierta , Orexinas/genética , Orexinas/metabolismo , Perciformes/clasificación , Perciformes/metabolismo , Filogenia , Pichia/genética , Pichia/metabolismo , Cultivo Primario de Células , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido
6.
Peptides ; 88: 97-105, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27988351

RESUMEN

In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia.


Asunto(s)
Ingestión de Alimentos/genética , Neuropéptido Y/metabolismo , Polipéptido Pancreático/metabolismo , Péptido YY/metabolismo , Secuencia de Aminoácidos , Animales , Regulación del Apetito/genética , Cíclidos/metabolismo , Hipotálamo/metabolismo , Neuropéptido Y/genética , Polipéptido Pancreático/genética , Péptido YY/genética , ARN Mensajero/genética , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA