Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 11(11): 9858-9867, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33089839

RESUMEN

3ß,7ß,25-Trihydroxycucurbita-5,23(E)-dien-19-al (TCD) is a triterpenoid isolated from wild bitter gourd that is a common tropical vegetable with neuroprotective effects. Because excessive glutamate release is a major cause of neuronal damage in various neurological disorders, the aims of this study were to examine the effect of TCD on glutamate release in vitro and to examine the effect of TCD in vivo. In rat cerebrocortical synaptosomes, TCD reduced 4-aminopyridine (4-AP)-stimulated glutamate release and Ca2+ concentration elevation, but had no effect on plasma membrane potential. TCD-mediated inhibition of 4-AP-induced glutamate release was dependent on the presence of extracellular calcium; persisted in the presence of the glutamate transporter inhibitor dl-TBOA, P/Q-type Ca2+ channel blocker ω-agatoxin IVA, and intracellular Ca2+-releasing inhibitors dantrolene and CGP37157; and was blocked by the vesicular transporter inhibitor bafilomycin A1 and the N-type Ca2+ channel blocker ω-conotoxin GVIA. Molecular docking studies have demonstrated that TCD binds to N-type Ca2+ channels. TCD-mediated inhibition of 4-AP-induced glutamate release was abolished by the Ca2+-dependent protein kinase C (PKC) inhibitor Go6976, but was unaffected by the Ca2+-independent PKC inhibitor rottlerin. Furthermore, TCD considerably reduced the phosphorylation of PKC, PKCα, and myristoylated alanine-rich C kinase substrate, a major presynaptic substrate for PKC. In a rat model of kainic acid (KA)-induced excitotoxicity, TCD pretreatment substantially attenuated KA-induced neuronal death in the CA3 hippocampal region. These results suggest that TCD inhibits synaptosomal glutamate release by suppressing N-type Ca2+ channels and PKC activity and exerts protective effects against KA-induced excitotoxicity in vivo.


Asunto(s)
Ácido Glutámico/metabolismo , Ácido Kaínico/efectos adversos , Momordica charantia/química , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Fármacos Neuroprotectores/administración & dosificación , Extractos Vegetales/administración & dosificación , Sinaptosomas/efectos de los fármacos , Triterpenos/administración & dosificación , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio/genética , Canales de Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Humanos , Masculino , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo
2.
Phytother Res ; 28(1): 49-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23447335

RESUMEN

DNA methylation plays a pivotal role in the epigenetic regulation of the transcription of a number of cancer-related genes, thereby representing an important target for cancer prevention and treatment. In our search for DNA methyltransferase (DNMT) inhibitors from Formosan plants, by screening against a library consisting of 12 structurally distinct natural products, we identified kazinol Q {4-[6-(1,1-dimethyl-allyl)-7-hydroxy-chroman-2-yl]-3,6-bis-(3-methyl-but-2-enyl)-benzene-1,2-diol} as an inhibitor of recombinant DNMT1 with IC50 of 7 µM. The effect of kazinol Q on DNMT inhibition was validated by its ability to reactivate the expression of a DNA methylation-silenced gene, E-cadherin, in MDA-MB-231 breast cancer cells. Moreover, kazinol Q suppressed the proliferation of MCF-7 breast and LNCaP prostate cancer cells, in part, through apoptosis induction. The role of DNMT1 inhibition in mediating kazinol Q's antiproliferative effect was supported by the protective effect of ectopic expression of DNMT1 on kazinol Q-induced cell death. Molecular modeling analysis suggests that kazinol Q inhibited DNMT activity by competing with cytosine binding, a mechanism similar to that described for (-)-epigallocatechin-3-gallate (EGCG). Relative to EGCG, kazinol Q exhibits several desirable features for drug development, including chemical stability and increased hydrophobicity, and might have therapeutic relevance to cancer treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Metilación de ADN/efectos de los fármacos , Flavonoides/farmacología , Hemiterpenos/farmacología , Antígenos CD , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1 , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Flavonoides/química , Hemiterpenos/química , Humanos , Concentración 50 Inhibidora , Masculino , Simulación del Acoplamiento Molecular , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Taiwán
3.
Sci Signal ; 6(267): ra19, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23512990

RESUMEN

Vitamin E is a fat-soluble vitamin with antioxidant properties. Tocopherols are the predominant form of vitamin E found in the diet and in supplements and have garnered interest for their potential cancer therapeutic and preventive effects, such as the dephosphorylation of Akt, a serine/threonine kinase with a pivotal role in cell growth, survival, and metabolism. Dephosphorylation of Akt at Ser473 substantially reduces its catalytic activity and inhibits downstream signaling. We found that the mechanism by which α-tocopherol and γ-tocopherol facilitate this site-specific dephosphorylation of Akt was mediated through the pleckstrin homology (PH) domain-dependent recruitment of Akt and PHLPP1 (PH domain leucine-rich repeat protein phosphatase, isoform 1) to the plasma membrane. We structurally optimized these tocopherols to obtain derivatives with greater in vitro potency and in vivo tumor-suppressive activity in two prostate xenograft tumor models. Binding affinities for the PH domains of Akt and PHLPP1 were greater than for other PH domain-containing proteins, which may underlie the preferential recruitment of these proteins to membranes containing tocopherols. Molecular modeling revealed the structural determinants of the interaction with the PH domain of Akt that may inform strategies for continued structural optimization. By describing a mechanism by which tocopherols facilitate the dephosphorylation of Akt at Ser473, we provide insights into the mode of antitumor action of tocopherols and a rationale for the translational development of tocopherols into novel PH domain-targeted Akt inhibitors.


Asunto(s)
Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vitamina E/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Membrana Celular/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Ratones Desnudos , Microscopía Confocal , Proteínas Nucleares/genética , Fosfoproteínas Fosfatasas/genética , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Serina/genética , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Vitamina E/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacología , gamma-Tocoferol/metabolismo , gamma-Tocoferol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA