Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135904

RESUMEN

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Asunto(s)
Neoplasias , Humanos , Ciudad del Vaticano , Neoplasias/prevención & control , Investigación Biomédica Traslacional , Atención a la Salud , Medicina de Precisión
2.
Gut Microbes ; 14(1): 2003176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34923903

RESUMEN

Non-fasting lipidemia (nFL), mainly contributed by postprandial lipidemia (PL), has recently been recognized as an important cardiovascular disease (CVD) risk as fasting lipidemia (FL). PL serves as a common feature of dyslipidemia in Type 2 Diabetes (T2D), albeit effective therapies targeting on PL were limited. In this study, we aimed to evaluate whether the therapy combining probiotics (Prob) and berberine (BBR), a proven antidiabetic and hypolipidemic regimen via altering gut microbiome, could effectively reduce PL in T2D and to explore the underlying mechanism. Blood PL (120 min after taking 100 g standard carbohydrate meal) was examined in 365 participants with T2D from the Probiotics and BBR on the Efficacy and Change of Gut Microbiota in Patients with Newly Diagnosed Type 2 Diabetes (PREMOTE study), a random, placebo-controlled, and multicenter clinical trial. Prob+BBR was superior to BBR or Prob alone in improving postprandial total cholesterol (pTC) and low-density lipoprotein cholesterol (pLDLc) levels with decrement of multiple species of postprandial lipidomic metabolites after 3 months follow-up. This effect was linked to the changes of fecal Bifidobacterium breve level responding to BBR alone or Prob+BBR treatment. Four fadD genes encoding long-chain acyl-CoA synthetase were identified in the genome of this B. breve strain, and transcriptionally activated by BBR. In vitro BBR treatment further decreased the concentration of FFA in the culture medium of B. breve compared to vehicle. Thus, the activation of fadD by BBR could enhance FFA import and mobilization in B. breve and diliminish the intraluminal lipids for absorption to mediate the effect of Prob+BBR on PL. Our study confirmed that BBR and Prob (B. breve) could exert a synergistic hypolipidemic effect on PL, acting as a gut lipid sink to achieve better lipidemia and CVD risk control in T2D.


Asunto(s)
Berberina/administración & dosificación , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hiperlipidemias/tratamiento farmacológico , Probióticos/administración & dosificación , Adulto , Animales , Colesterol/sangre , LDL-Colesterol/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/microbiología , Método Doble Ciego , Quimioterapia Combinada , Heces/microbiología , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/microbiología , Masculino , Persona de Mediana Edad , Periodo Posprandial/efectos de los fármacos
3.
Nat Comput Sci ; 2(4): 234-242, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177542

RESUMEN

DNA is a promising data storage medium due to its remarkable durability and space-efficient storage. Early bit-to-base transcoding schemes have primarily pursued information density, at the expense of introducing biocompatibility challenges or decoding failure. Here we propose a robust transcoding algorithm named the yin-yang codec, using two rules to encode two binary bits into one nucleotide, to generate DNA sequences that are highly compatible with synthesis and sequencing technologies. We encoded two representative file formats and stored them in vitro as 200 nt oligo pools and in vivo as a ~54 kbps DNA fragment in yeast cells. Sequencing results show that the yin-yang codec exhibits high robustness and reliability for a wide variety of data types, with an average recovery rate of 99.9% above 104 molecule copies and an achieved recovery rate of 87.53% at ≤102 copies. Additionally, the in vivo storage demonstration achieved an experimentally measured physical density close to the theoretical maximum.

4.
Nat Commun ; 11(1): 5015, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024120

RESUMEN

Human gut microbiome is a promising target for managing type 2 diabetes (T2D). Measures altering gut microbiota like oral intake of probiotics or berberine (BBR), a bacteriostatic agent, merit metabolic homoeostasis. We hence conducted a randomized, double-blind, placebo-controlled trial with newly diagnosed T2D patients from 20 centres in China. Four-hundred-nine eligible participants were enroled, randomly assigned (1:1:1:1) and completed a 12-week treatment of either BBR-alone, probiotics+BBR, probiotics-alone, or placebo, after a one-week run-in of gentamycin pretreatment. The changes in glycated haemoglobin, as the primary outcome, in the probiotics+BBR (least-squares mean [95% CI], -1.04[-1.19, -0.89]%) and BBR-alone group (-0.99[-1.16, -0.83]%) were significantly greater than that in the placebo and probiotics-alone groups (-0.59[-0.75, -0.44]%, -0.53[-0.68, -0.37]%, P < 0.001). BBR treatment induced more gastrointestinal side effects. Further metagenomics and metabolomic studies found that the hypoglycaemic effect of BBR is mediated by the inhibition of DCA biotransformation by Ruminococcus bromii. Therefore, our study reports a human microbial related mechanism underlying the antidiabetic effect of BBR on T2D. (Clinicaltrial.gov Identifier: NCT02861261).


Asunto(s)
Berberina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/uso terapéutico , Berberina/uso terapéutico , Femenino , Microbioma Gastrointestinal/fisiología , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Masculino , Metagenoma/efectos de los fármacos , Metagenoma/genética , Persona de Mediana Edad , Placebos , Resultado del Tratamiento
5.
Gigascience ; 8(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31574156

RESUMEN

BACKGROUND: The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.


Asunto(s)
Genoma de Planta , Solanum/genética , Aclimatación/genética , Resistencia a la Enfermedad/genética , Sequías , Evolución Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Retroelementos , Secuencias Repetidas Terminales
6.
Nat Commun ; 8(1): 1785, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29176714

RESUMEN

Antidiabetic medication may modulate the gut microbiota and thereby alter plasma and faecal bile acid (BA) composition, which may improve metabolic health. Here we show that treatment with Acarbose, but not Glipizide, increases the ratio between primary BAs and secondary BAs and plasma levels of unconjugated BAs in treatment-naive type 2 diabetes (T2D) patients, which may beneficially affect metabolism. Acarbose increases the relative abundances of Lactobacillus and Bifidobacterium in the gut microbiota and depletes Bacteroides, thereby changing the relative abundance of microbial genes involved in BA metabolism. Treatment outcomes of Acarbose are dependent on gut microbiota compositions prior to treatment. Compared to patients with a gut microbiota dominated by Prevotella, those with a high abundance of Bacteroides exhibit more changes in plasma BAs and greater improvement in metabolic parameters after Acarbose treatment. Our work highlights the potential for stratification of T2D patients based on their gut microbiota prior to treatment.


Asunto(s)
Acarbosa/uso terapéutico , Ácidos y Sales Biliares/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Bacteroides/fisiología , Bifidobacterium/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Heces/química , Femenino , Glipizida/uso terapéutico , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Humanos , Lactobacillus/fisiología , Masculino , Persona de Mediana Edad , Dinámica Poblacional
7.
Gigascience ; 6(5): 1-14, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368449

RESUMEN

Longan (Dimocarpus longan Lour.), an important subtropical fruit in the family Sapindaceae, is grown in more than 10 countries. Longan is an edible drupe fruit and a source of traditional medicine with polyphenol-rich traits. Tree size, alternate bearing, and witches' broom disease still pose serious problems. To gain insights into the genomic basis of longan traits, a draft genome sequence was assembled. The draft genome (about 471.88 Mb) of a Chinese longan cultivar, "Honghezi," was estimated to contain 31 007 genes and 261.88 Mb of repetitive sequences. No recent whole-genome-wide duplication event was detected in the genome. Whole-genome resequencing and analysis of 13 cultivated D. longan accessions revealed the extent of genetic diversity. Comparative transcriptome studies combined with genome-wide analysis revealed polyphenol-rich and pathogen resistance characteristics. Genes involved in secondary metabolism, especially those from significantly expanded (DHS, SDH, F3΄H, ANR, and UFGT) and contracted (PAL, CHS, and F3΄5΄H) gene families with tissue-specific expression, may be important contributors to the high accumulation levels of polyphenolic compounds observed in longan fruit. The high number of genes encoding nucleotide-binding site leucine-rich repeat (NBS-LRR) and leucine-rich repeat receptor-like kinase proteins, as well as the recent expansion and contraction of the NBS-LRR family, suggested a genomic basis for resistance to insects, fungus, and bacteria in this fruit tree. These data provide insights into the evolution and diversity of the longan genome. The comparative genomic and transcriptome analyses provided information about longan-specific traits, particularly genes involved in its polyphenol-rich and pathogen resistance characteristics.


Asunto(s)
Frutas/genética , Genoma de Planta , Sapindaceae/genética , Empalme Alternativo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Filogenia , Polimorfismo de Nucleótido Simple , Polifenoles/biosíntesis , Análisis de Secuencia de ARN
8.
Microbiome ; 5(1): 43, 2017 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-28390422

RESUMEN

BACKGROUND: It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those associated with obesity, we took advantage of the different susceptibility of C57BL/6JBomTac (BL6) and 129S6/SvEvTac (Sv129) mice to diet-induced obesity and of their different responses to inhibition of cyclooxygenase (COX) activity, where inhibition of COX activity in BL6 mice prevents HF diet-induced obesity, but in Sv129 mice accentuates obesity. RESULTS: Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF or a HF diet. Conversely, the abundance of genes involved in propionate metabolism, associated with increased energy harvest, was higher in BL6 mice than Sv129 mice. CONCLUSIONS: The changes in the composition of the gut microbiota were predominantly driven by high-fat feeding rather than reflecting the obese state of the mice. Differences in the abundance of butyrate and propionate producing bacteria in the gut may at least in part contribute to the observed differences in obesity propensity in Sv129 and BL6 mice.


Asunto(s)
Butiratos/metabolismo , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Microbioma Gastrointestinal , Propionatos/metabolismo , Animales , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/aislamiento & purificación , Inhibidores de la Ciclooxigenasa/farmacología , Firmicutes/crecimiento & desarrollo , Firmicutes/aislamiento & purificación , Genoma Bacteriano/genética , Indometacina/farmacología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad , Prostaglandina-Endoperóxido Sintasas/metabolismo
9.
Oncol Rep ; 37(4): 2215-2226, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28350084

RESUMEN

Hepatocellular carcinoma (HCC) is the most common malignancy of the liver. Genomic analysis is conducted to identify genetic alterations in driver genes which are all druggable targets for cancer therapy. In the present study, we performed an exome sequencing of 45 driver genes in 100 paired samples from HCC patients including tumors and matched adjacent normal tissues using Illumina HiSeq 2000 platform. Non-synonymous mutations were ascertained using the iPLEX MassARRAY system and Sanger sequencing. Clinicopathological relevance with genetic variations was assessed using SPSS software. The prognostic analyses of patients with gene mutation status were summarized using Kaplan-Meier curves. Sixty-one non-synonymous somatic mutations were identified in 43% of the HCC patients. The most frequent mutations were: TP53 (20%), RET (6%), PLCE1 (5%), PTEN (4%) and VEGFR2 (3%). Patients with mutations in TP53 had a lower overall survival (OS) (P=0.002) than those without mutations. Recurrent mutations in the Ret proto­oncogene (RET) were associated with poor outcomes for both disease­free survival (DFS) (P=0.028) and OS (P=0.001) in HCC patients. The mutational status of sorafenib-targeted genes were associated with decreased DFS (P=0.039), and decreased OS (P=0.15) without statistical significance. Mutual exclusion of TP53 and RET mutations were observed in the present study. In conclusion, patients with TP53 mutations, RET mutations and sorafenib-targeted gene mutations were demonstrated to be associated with poor HCC prognosis, which suggests that both TP53 and RET may serve as biomarkers of prognostic evaluation and targeted therapy in HCC.


Asunto(s)
Carcinoma Hepatocelular/patología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias Hepáticas/patología , Mutación , Proteínas Proto-Oncogénicas c-ret/genética , Análisis de Secuencia de ADN/métodos , Proteína p53 Supresora de Tumor/genética , Adulto , Anciano , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Exoma , Femenino , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Pronóstico , Sorafenib , Análisis de Supervivencia
10.
J Gerontol A Biol Sci Med Sci ; 70(4): 426-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24895270

RESUMEN

Logistic regression analysis based on data from 822 Han Chinese oldest old aged 92+ demonstrated that interactions between carrying FOXO1A-266 or FOXO3-310 or FOXO3-292 and tea drinking at around age 60 or at present time were significantly associated with lower risk of cognitive disability at advanced ages. Associations between tea drinking and reduced cognitive disability were much stronger among carriers of the genotypes of FOXO1A-266 or FOXO3-310 or FOXO3-292 compared with noncarriers, and it was reconfirmed by analysis of three-way interactions across FOXO genotypes, tea drinking at around age 60, and at present time. Based on prior findings from animal and human cell models, we postulate that intake of tea compounds may activate FOXO gene expression, which in turn may positively affect cognitive function in the oldest old population. Our empirical findings imply that the health benefits of particular nutritional interventions, including tea drinking, may, in part, depend upon individual genetic profiles.


Asunto(s)
Envejecimiento/genética , Pueblo Asiatico/genética , Trastornos del Conocimiento/prevención & control , Cognición/efectos de los fármacos , Conducta de Ingestión de Líquido , Factores de Transcripción Forkhead/genética , , Anciano de 80 o más Años , Alelos , China/etnología , Trastornos del Conocimiento/etnología , Trastornos del Conocimiento/genética , Medicina Basada en la Evidencia , Femenino , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Expresión Génica , Genotipo , Humanos , Estudios Longitudinales , Masculino , Fenotipo , Factores de Riesgo , Encuestas y Cuestionarios
11.
Biochem Pharmacol ; 74(6): 940-7, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17673184

RESUMEN

Low-density lipoprotein receptor (LDLR) plays a pivotal role in the control of plasma LDL-cholesterol level. This occurs predominantly at the transcriptional level through two gene regulation elements, named SRE: sterol-responsive element and SIRE: sterol-independent responsive element. We have developed a high-throughput screening using LDLR promoter activation-based assay to search for cholesterol-lowering compounds from a Chinese herb-based natural compound library. With this approach, we identified two compounds, named Daphnetoxin and Gniditrin, from Chinese herb Daphne giraldii Nitsche, which could activate LDLR promoter. Characterization of these compounds showed that they increased the level of LDLR mRNA and consequently up-regulate LDLR expression. The structures of these compounds are different from well-known LDLR promoter activating compounds such as GW707. The results suggested that these herbal compounds could represent good candidates for development of new classes of cholesterol-lowering drugs.


Asunto(s)
Anticolesterolemiantes/farmacología , Diterpenos/farmacología , Medicamentos Herbarios Chinos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Evaluación Preclínica de Medicamentos , Regiones Promotoras Genéticas/efectos de los fármacos , ARN Mensajero/análisis , Receptores de LDL/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA