Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells Dev ; 33(7-8): 189-199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366745

RESUMEN

Research on tooth regeneration using human-induced pluripotent stem cells (hiPSCs) is valuable for autologous dental regeneration. Acquiring mesenchymal and epithelial cells as a resource for dental regeneration is necessary because mesenchymal-epithelial interactions play an essential role in dental development. We reported the establishment of hiPSCs-derived dental epithelial-like cell (EPI-iPSCs), but hiPSCs-derived dental mesenchymal stem cells (MSCs) have not yet been reported. This study was conducted to establish hiPSCs-derived MSCs and to differentiate them into dental cells with EPI-iPSCs. Considering that dental MSCs are derived from the neural crest, hiPSCs were induced to differentiate into MSCs through neural crest formation to acquire the properties of dental MSCs. To differentiate hiPSCs into MSCs through neural crest formation, established hiPSCs were cultured and differentiated with PA6 stromal cells and differentiated hiPSCs formed neurospheres on ultralow-attachment plates. Neurospheres were differentiated into MSCs in serum-supplemented medium. Neural crest-mediated MSCs (NC-MSCs) continuously showed typical MSC morphology and expressed MSC markers. After 8 days of odontogenic induction, the expression levels of odontogenic/mineralization-related genes and dentin sialophosphoprotein (DSPP) proteins were increased in the NC-MSCs alone group in the absence of coculturing with dental epithelial cells. The NC-MSCs and EPI-iPSCs coculture groups showed high expression levels of amelogenesis/odontogenic/mineralization-related genes and DSPP proteins. Furthermore, the NC-MSCs and EPI-iPSCs coculture group yielded calcium deposits earlier than the NC-MSCs alone group. These results indicated that established NC-MSCs from hiPSCs have dental differentiation capacity with dental epithelial cells. In addition, it was confirmed that hiPSCs-derived dental stem cells could be a novel cell source for autologous dental regeneration.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Humanos , Diferenciación Celular , Transición Epitelial-Mesenquimal , Técnicas de Cocultivo , Células Cultivadas
2.
Front Vet Sci ; 10: 1153903, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143500

RESUMEN

Introduction: Allodynia, which can be induced by paclitaxel administration, is the presence of pain as a result of a stimulus that does not usually provoke pain. Many studies have investigated the analgesic efficacy of acupuncture, including laser acupuncture (LA) and electroacupuncture (EA). Although pain-related diseases are relatively common, few studies have analyzed the analgesic effects and mechanisms of LA combined with EA. The purpose of this study was to investigate the therapeutic effect and mechanism of manual acupuncture (MA), EA, LA, and combined therapy (LA + EA) in a paclitaxel-induced allodynia rat model. Methods: A total of 56 rats were classified into eight groups: a normal (Nor, n = 7), a control (Con, n = 7), an MA (n = 7), an EA (n = 7), a 650-nm LA (650LA, n = 7), an 830-nm LA (830LA, n = 7), a 650-nm LA combined with EA (650LA + EA, n = 7), and an 830-nm LA combined with EA group (830LA + EA, n = 7). Allodynia was induced by intraperitoneal injection of 2 mg/kg of paclitaxel every other day for a total of four times except the Nor group. Acupuncture treatments were conducted at the points of Jungwan (CV12) and Joksamni (ST36) once every other day for 6 min, for a total of nine times. Withdrawal response reaction times and force intensity of the foot were measured before the start of the experiment, after the 4th paclitaxel administration (day 8), and after the 9th and last treatment (day 15). On the 16th day, mRNA and protein expression in the spinal nerves was assessed, and a metabolome analysis of the animals' feces was performed. Results and discussion: Our analyses show that 650LA + EA treatment resulted in an upregulation of protein expression related to pain relief and nerve regeneration, whereas 830LA + EA treatment led to significant changes in metabolomes. This study demonstrates that a combination treatment of EA and LA can suppress allodynia and promote upregulation of protein expression related to nerve regeneration and is effective in changing the intestinal microbiome. Further large-scale research is required to assess the exact mechanism underlying the therapeutic effect of this combination treatment in pain-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA