Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Pharm Bull ; 47(1): 292-302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281773

RESUMEN

Staphylococcus aureus (SAU) stands as the prevailing pathogen in post-traumatic infections, with the emergence of antibiotic resistance presenting formidable treatment hurdles. The pressing need is to explore novel antibiotics to address this challenge. ShangKeHuangShui (SKHS), a patented traditional Chinese herbal formula, has gained widespread use in averting post-traumatic infections, but its biological effects remain incomplete understanding. This study's primary objective was to delve into the antibacterial properties, potential antibacterial compounds within SKHS, and their associated molecular targets. In vitro SKHS antibacterial assays demonstrated that the minimum inhibitory concentration (MIC) was 8.625 mg/mL and the minimum bactericide concentration (MBC) was 17.25 mg/mL. Proteomic analysis based on tandem mass tag (TMT) showed significant changes in the expression level of 246 proteins in SKHS treated group compared to control group, with 79 proteins upregulated and 167 proteins downregulated (>1.5-fold, p < 0.05). Subsequently, thirteen target proteins related to various biological processes and multiple metabolic pathways were selected to conduct parallel reaction monitoring (PRM) and molecular docking screen. In protein tyrosine phosphatase PtpA (ptpA) docking screening, phellodendrine and obacunone can bind to ptpA with the binding energy of - 8.4 and - 8.3 kcal/mol, respectively. This suggests their potential impact on antibacterial activity by modulating the two-component system of SAU. The discovery lays a groundwork for future research endeavors for exploring new antibacterial candidates and elucidating specific active chemical components within SKHS that match target proteins. Further investigations are imperative to unveil the biological effects of these monomers and their potential synergistic actions.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Proteómica , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
2.
Bioengineered ; 14(1): 165-178, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37377392

RESUMEN

To establish a standard Traditional Chinese medicine (TCM) bone setting technique, standardize the operation and inherit the TCM bone setting technique. This project was based on the interactive tracking of bone setting techniques with a dedicated position tracker, the motion tracking of bone setting techniques based on RGBD (Red Green Blue Depth) cameras, the digital analysis of bone setting techniques, and the design of the virtual reality platform for bone setting techniques. These key technical researches were combined to construct an interactive bone setting technique. The virtual simulation system can reproduce the implementation process of the expert's bone setting technique. The user can observe the implementation of the manipulative technique from multiple angles; through human-computer interaction, the whole process of implementation of the bone setting technique can be simulated, and the movement and reduction of the affected bone can be observed at the same time. It can be used as a teaching and training system for assisting bone setting techniques. Students can use the system to carry out repeated self-training, and can instantly compare with the standard techniques of the expert database, breaking the traditional teaching mode of 'expected and unspeakable' and avoid directly using patients. Therefore, this research makes it possible to reduce teaching costs, reduce risks, improve teaching quality, and make up for the lack of teaching conditions. It is very positive for the inheritance of the traditional Chinese 'intangible culture' of bone setting techniques, and to promote the digitalization and standardization of bone setting techniques.


Using computer technology to digitally record bone-setting manipulations.Construct a virtual simulation system for interactive bone-setting manipulation.Promote the digitization and standardization of bone-setting techniques.


Asunto(s)
Realidad Virtual , Humanos , Simulación por Computador , Medicina Tradicional China , Computadores
3.
Phytomedicine ; 118: 154939, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37354697

RESUMEN

BACKGROUND AND PURPOSE: Fatty acid binding protein 4 (FABP4) has been identified as a contributor to cartilage degradation in osteoarthritis (OA) patients, and inhibiting FABP4 using small molecules has emerged as a promising approach for developing OA drugs. Our previous research showed that Andrographis paniculata, a medicinal plant, strongly inhibits FABP4 activity. This led us to hypothesize that Andrographis paniculata ingredients might have protective effects on OA cartilage through FABP4 inhibition. METHODS: We analyzed scRNA-seq data from joint tissue of OA patients (GSE152805; GSE145286) using Scanpy 1.9.1 and Single Cell Portal. We conducted docking analysis of FABP4 inhibitors using Autodock Vina v.1.0.2. We evaluated the anti-FABP4 activity using a fluorescence displacement assay and measured the fatty acid oxidation (FAO) activity using the FAOBlue assay. We used H2DCF-DA to measure reactive oxygen species (ROS) levels. We studied signaling pathways using bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. We evaluated anti-OA activity in monosodium iodoacetate (MIA)-induced rats. RESULTS: We identified Andrographolide (AP) as a novel FABP4 inhibitor. Bulk RNA-sequencing analysis revealed that FABP4 upregulated FAO and ROS in chondrocytes, which was inhibited by AP. ROS generation activated the NF-κB pathway, leading to overexpression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which is a responsible factor for cartilage degradation in OA patients. AP inhibited FABP4, thereby reducing the overexpression of ADAMTS4 by inhibiting the NF-κB pathway. In MIA rats, AP treatment reduced the overexpression of ADAMTS4, repaired cartilage and subchondral bone, and promoted cartilage regeneration. CONCLUSION: Our results indicate that the inhibition of FABP4 activity by AP explains the anti-OA properties of Andrographis paniculata by protecting against cartilage degradation in OA patients. Additionally, our findings suggest that AP may be a promising therapeutic agent for OA treatment due to its ability to alleviate cartilage damage and bone erosion.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Osteoartritis/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/farmacología
4.
J Ethnopharmacol ; 311: 116476, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37031825

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shang-Ke-Huang-Shui (SKHS) is a classic traditional Chinese medicine formula originally from the southern China city of Foshan. It has been widely used in the treatment of osteoarthritis (OA) but underlying molecular mechanisms remain unclear. AIM OF STUDY: Recently, activation of C-X-C chemokine receptor type 4 (CXCR4) signaling has been reported to induce cartilage degradation in OA patients; therefore, inhibition of CXCR4 signaling has becoming a promising approach for OA treatment. The aim of this study was to validate the cartilage protective effect of SKHS and test whether the anti-OA effects of SKHS depend on its inhibition on CXCR4 signaling. Additionally, CXCR4 antagonist in SKHS should be identified and its anti-OA activity should also be tested in vitro and in vivo. METHODS: The anti-OA effects of SKHS and the newly identified CXCR4 antagonist was evaluated by monosodium iodoacetate (MIA)-induced rats. The articular cartilage surface was examined by hematoxylin and eosin (H&E) staining and Safranin O-Fast Green (S-F) staining whereas the subchondral bone was examined by micro-CT. CXCR4 antagonist screenings were conducted by molecular docking and calcium response assay. The CXCR4 antagonist was characterized by UPLC/MS/MS. The bulk RNA-Seq was conducted to identify CXCR4-mediated signaling pathway. The expression of ADAMTS4,5 was tested by qPCR and Western blot. RESULTS: SKHS protected rats from MIA-induced cartilage degradation and subchondral bone damage. SKHS also inhibited CXCL12-indcued ADAMTS4,5 overexpression in chondrocytes through inhibiting Akt pathway. Coptisine has been identified as the most potent CXCR4 antagonist in SKHS. Coptisine reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes. Furthermore, in MIA-induced OA model, the repaired cartilage and subchondral bone were observed in the coptisine-treated rats. CONCLUSION: We first report here that the traditional Chinese medicine formula SKHS and its predominate phytochemical coptisine significantly alleviated cartilage degradation as well as subchondral bone damage through inhibiting CXCR4-mediated ADAMTS4,5 overexpression. Together, our work has provided an important insight of the molecular mechanism of SKHS and coptisine for their treatment of OA.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Osteoartritis , Ratas , Animales , Ácido Yodoacético/efectos adversos , Ácido Yodoacético/metabolismo , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Condrocitos , Transducción de Señal , Osteoartritis de la Rodilla/metabolismo , Receptores CXCR4/metabolismo
5.
Phytomedicine ; 108: 154506, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403512

RESUMEN

BACKGROUND AND PURPOSE: C-X-C chemokine receptor type 4 (CXCR4) inhibition protects cartilage in osteoarthritis (OA) animal models. Therefore, CXCR4 has becoming a novel target for OA drug development. Since dietary and herbal supplements have been widely used for joint health, we hypothesized that some supplements exhibit protective effects on OA cartilage through inhibiting CXCR4 signaling. METHODS: The single-cell RNA sequencing data of OA patients (GSE152805) was re-analyzed by Scanpy 1.9.0. The docking screening of CXCR4 antagonists was conducted by Autodock Vina 1.2.0. The CXCR4 antagonistic activity was evaluated by calcium response in THP-1 cells. Signaling pathway study was conducted by bulk RNA sequencing and western blot analysis in human C28/I2 chondrocytes. The anti-OA activity was evaluated in monosodium iodoacetate (MIA)-induced rats. RESULTS: Astragaloside IV (ASN IV), the predominate phytochemical in Astragalus membranaceus, has been identified as a novel CXCR4 antagonist. ASN IV reduced CXCL12-induced ADAMTS4,5 overexpression in chondrocytes through blocking Akt signaling pathway. Furthermore, ASN IV administration significantly repaired the damaged cartilage and subchondral bone in MIA-induced rats. CONCLUSION: The blockade of CXCR4 signaling by ASN IV could explain anti-OA activities of Astragalus membranaceus by protection of cartilage degradation in OA patients. Since ASN IV as an antiviral has been approved by China National Medical Products Administration for testing in people, repurposing of ASN IV as a joint protective agent might be a promising strategy for OA drug development.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ratas , Animales , Ácido Yodoacético/toxicidad , Ácido Yodoacético/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Transducción de Señal , Astragalus propinquus , Receptores CXCR4/metabolismo
6.
Life (Basel) ; 12(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36362861

RESUMEN

Coronavirus Disease 2019 (COVID-19) is a highly infectious and pathogenic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early in this epidemic, the herbal formulas used in traditional Chinese medicine (TCM) were widely used for the treatment of COVID-19 in China. According to Venn diagram analysis, we found that Glycyrrhizae Radix et Rhizoma is a frequent herb in TCM formulas against COVID-19. The extract of Glycyrrhizae Radix et Rhizoma exhibits an anti-SARS-CoV-2 replication activity in vitro, but its pharmacological mechanism remains unclear. We here demonstrate that glycyrrhizin, the main active ingredient of Glycyrrhizae Radix et Rhizoma, prevents the coronavirus from entering cells by targeting angiotensin-converting enzyme 2 (ACE2). Glycyrrhizin inhibited the binding of the spike protein of the SARS-CoV-2 to ACE2 in our Western blot-based assay. The following bulk RNA-seq analysis showed that glycyrrhizin down-regulated ACE2 expression in vitro which was further confirmed by Western blot and quantitative PCR. Together, we believe that glycyrrhizin inhibits SARS-CoV-2 entry into cells by targeting ACE2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA