Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27492, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463888

RESUMEN

The Zingiberaceae family serves as a diverse repository of bioactive phytochemicals, comprising approximately 52 genera and 1300 species of aromatic perennial herbs distinguished by their distinct creeping horizontal or tuberous rhizomes. Amomum villosum Lour. and Amomum tsao-ko Crevost & Lemaire., are the important plants of family Zingiberaceae that have been widely used in traditional medicine for the treatment of many ailments. The Amomum species are employed for their aromatic qualities and are valued as spices and flavorings. In the essential oils (EOs) of Amomum species, notable constituents include, camphor, methyl chavicol, bornyl acetate, trans-p-(1-butenyl) anisole, α-pinene, and ß-pinene. OBJECTIVE: The aim of this review is to present an overview of pharmacological studies pertaining to the extracts and secondary metabolites isolated from both species. The foremost objective of review is not only to increase the popularity of Amomum as a healthy food choice but also to enhance its status as a staple ingredient for the foreseeable future. RESULT: We endeavored to gather the latest information on antioxidant, antidiabetic, anticancer, antiobesity, antimicrobial, and anti-inflammatory properties of plants as well as their role in neuroprotective diseases. Research conducted through in-vitro studies, animal model, and compounds analysis have revealed that both plants exhibit a diverse array health promoting properties. CONCLUSION: the comprehensive review paper provides valuable insights into the diverse range of bioactive phytochemicals found in A. villosum and A. tsao-ko, showcasing their potential in preventing diseases and promoting overall human well-being. The compilation of information on their various health-enhancing properties contributes to the broader understanding of these plants and their potential applications in traditional medicine and beyond.

2.
Rapid Commun Mass Spectrom ; 37(16): e9541, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37190851

RESUMEN

RATIONALE: Lignans have attracted much attention from researchers because of their wide distribution and industrial applications in plants, as well as the remarkable diversity of their biological activities. As the literature has mainly focused on the extraction and identification of monomeric compounds of lignans, most lignans in Dendrobium officinale, a traditional Chinese medicine with a long cultivation history and rich sources, have not been detected using quality control methods. The aim of this study was to identify the lignans in Dactilon officinale. METHODS: High-performance liquid chromatography (HPLC) coupled with diode array detection and HPLC multiple-stage tandem mass spectrometry was used to identify the chemical constituents of D. officinale. Simultaneously, the characteristic chromatograms of D. officinale were established. Additionally, a method was established to determine the content of syringaresinol-4,4'-di-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside and syringaresinol. RESULTS: Thirty-three lignans, including 17 tetrahydrofuran lignans, two dibenzylbutane lignans, three aryl tetrahydronaphthalene lignans and 11 8-O-4'-neolignans, were tentatively identified from the methanol extract of the stems of D. officinale. This is the first report of 8-O-4'-neolignans from D. officinale. In addition, a total of eight characteristic peaks were marked in characteristic chromatograms, which were identified as lyoniresinol-9'-O-ß-D-glucoside, syringaresinol-4,4'-di-O-ß-D-glucoside, 8-hydroxy-syringaresinol-4-O-ß-D-glucoside, 5,5'-dimethoxy-lariciresinol-4-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside, 4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneoligna-7'-ene-9,9'-diol-9-O-ß-D-glucoside, 4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneoligna-7'-ene-9,9'-diol-4-O-ß-D-glucoside and syringaresinol. Our results showed that no significant difference occurred in lignan composition among the 99 batches of D. officinale from different sources. However, the peak areas of the lignans of D. officinale planted under simulated wild culture were generally higher than those in greenhouses, and showed an upward trend with the increase in growth years. The average contents of syringaresinol-4,4'-di-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside and syringaresinol were 10.112-179.873, 51.227-222.294 and 6.368-120.341 µg/g, respectively. CONCLUSIONS: This study provided a basis for improving the quality control of D. officinale and could provide references for the identification of lignans in other Dendrobium species.


Asunto(s)
Dendrobium , Lignanos , Dendrobium/química , Glucósidos/química , Espectrometría de Masas
3.
Molecules ; 27(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35956759

RESUMEN

Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.


Asunto(s)
Antialérgicos , Coix , Animales , Alimentos Funcionales , Humanos , Fenoles , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
4.
Am J Physiol Renal Physiol ; 303(1): F92-104, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22496411

RESUMEN

Dietary potassium (K(+)) restriction and hypokalemia have been reported to change the abundance of most renal Na(+) and K(+) transporters and aquaporin-2 isoform, but results have not been consistent. The aim of this study was to reexamine Na(+), K(+) and H(2)O transporters' pool size regulation in response to removing K(+) from a diet containing 0.74% NaCl, as well as from a diet containing 2% NaCl (as found in American diets) to blunt reducing total diet electrolytes. Sprague-Dawley rats (n = 5-6) were fed for 6 days with one of these diets: 2% KCl, 0.74% NaCl (2K1Na, control chow) compared with 0.03% KCl, 0.74% NaCl (0K1Na); or 2% KCl, 2%NaCl (2K2Na) compared with 0.03% KCl, 2% NaCl (0K2Na, Na(+) replete). In both 0K1Na and 0K2Na there were significant decreases in: 1) plasma [K(+)] (<2.5 mM); 2) urinary K(+) excretion (<5% of control); 3) urine osmolality and plasma [aldosterone], as well as 4) an increase in urine volume and medullary hypertrophy. The 0K2Na group had the lowest [aldosterone] (172.0 ± 17.4 pg/ml) and lower blood pressure (93.2 ± 4.9 vs. 112.0 ± 3.1 mmHg in 2K2Na). Transporter pool size regulation was determined by quantitative immunoblotting of renal cortex and medulla homogenates. The only differences measured in both 0K1Na and 0K2Na groups were a 20-30% decrease in cortical ß-ENaC, 30-40% increases in kidney-specific Ste20/SPS1-related proline/alanine-rich kinase, and a 40% increase in medullary sodium pump abundance. The following proteins were not significantly changed in both the 0 K groups: Na(+)/H(+) exchanger isoform 3; Na(+)-K(+)-Cl(-) cotransporter; Na(+)-Cl(-) cotransporter, oxidative stress response kinase-1; renal outer medullary K(+) channel; autosomal recessive hypercholesterolemia; c-Src, aquaporin 2 isoform; or renin. Thus, despite profound hypokalemia and renal K(+) conservation, we did not confirm many of the changes that were previously reported. We predict that changes in transporter distribution and activity are likely more important for conserving K(+) than changes in total abundance.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Nefronas/metabolismo , Deficiencia de Potasio/metabolismo , Potasio en la Dieta/farmacología , Cloruro de Sodio Dietético/farmacología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Masculino , Nefronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA