Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3046, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031426

RESUMEN

Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer type with high morbidity in Southeast Asia, however the pathogenic mechanism of this disease is poorly understood. Using integrative pharmacogenomics, we find that NPC subtypes maintain distinct molecular features, drug responsiveness, and graded radiation sensitivity. The epithelial carcinoma (EC) subtype is characterized by activations of microtubule polymerization and defective mitotic spindle checkpoint related genes, whereas sarcomatoid carcinoma (SC) and mixed sarcomatoid-epithelial carcinoma (MSEC) subtypes exhibit enriched epithelial-mesenchymal transition (EMT) and invasion promoting genes, which are well correlated with their morphological features. Furthermore, patient-derived organoid (PDO)-based drug test identifies potential subtype-specific treatment regimens, in that SC and MSEC subtypes are sensitive to microtubule inhibitors, whereas EC subtype is more responsive to EGFR inhibitors, which is synergistically enhanced by combining with radiotherapy. Through combinational chemoradiotherapy (CRT) screening, effective CRT regimens are also suggested for patients showing less sensitivity to radiation. Altogether, our study provides an example of applying integrative pharmacogenomics to establish a personalized precision oncology for NPC subtype-guided therapies.


Asunto(s)
Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Farmacogenética/métodos , Evaluación Preclínica de Medicamentos/métodos , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Medicina de Precisión , Transcriptoma , Secuenciación del Exoma
2.
Oncol Lett ; 13(2): 605-612, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28356936

RESUMEN

The molecule 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoic acid (danshensu), a herbal preparation used in traditional Chinese medicine, has been found to possess potential antitumor and anti-angiogenesis effects. The aim of the present study was to investigate the efficacy of the combination of radiation therapy (RT) with danshensu in the treatment of Lewis lung carcinoma (LLC) xenografts, whilst exploring and evaluating the mechanism involved. In total, 8-week old female C57BL/6J mice were randomly assigned into 3 groups to receive: RT, RT + cisplatin and RT + danshensu, respectively, when LLC reached 100-150 mm3. Each group was divided into 7 subgroups according to the different irradiation doses that were administered. Tumor growth curves were created and the sensitization enhancement ratios of the drugs were calculated. The experiment was then repeated, and the 4 groups of tumor-bearing mice were treated with natural saline, danshensu, RT + danshensu and RT, respectively. The mice were sacrificed on day 7, and tumor tissue and blood were collected to determine microvessel density, the expression of proangiogenic factors, and the levels of blood thromboxane B2 and 6-keto-prostaglandin-F1α. Tumor hypoxia was also detected using in vivo fluorescence imaging. With respect to LLC xenografts, treatment with danshensu + RT significantly enhanced the effects of tumor growth inhibition (P<0.05). Furthermore, tumor vasculature was remodeled and microcirculation was improved, which significantly reduced tumor hypoxia (P<0.05). The present study demonstrated that danshensu significantly enhanced the radioresponse of LLC xenografts in mice. The mechanism involved may be associated with the alleviation of tumor cell hypoxia following treatment with danshensu + RT, caused by the improvement of tumor microcirculation and the remodeling of tumor vasculature.

3.
Drug Deliv ; 24(1): 300-308, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28165807

RESUMEN

The purpose of this study was to prepare ES-loaded chitosan nanoparticles (ES-NPs) and evaluate the antitumor effect of these particles on the Lewis lung cancer model. ES-NPs were prepared by a simple ionic cross-linking method. The characterization of the ES-NPs, including size distribution, zeta potential, loading efficiency and encapsulation efficiency (EE), was performed. An in vitro release test was also used to determine the release behavior of the ES-NPs. Cell viability and cell migration were assayed to detect the in vitro antiangiogenic effect of ES-NPs. In order to clarify the antitumor effect of ES-NPs in vivo, the Lewis lung cancer model was used. ES-NPs were successfully synthesized and shown to have a suitable size distribution and high EE. The nanoparticles were spherical and homogeneous in shape and exhibited an ideal releasing profile in vitro. Moreover, ES-NPs significantly inhibited the proliferation and migration of human umbilical vascular endothelial cells (HUVECs). The in vivo antiangiogenic activity was evaluated by ELISA and immunohistochemistry analyses, which revealed that ES-NPs had a stronger antiangiogenic effect for reinforced anticancer activity. Indeed, even the treatment cycle in which ES-NPs were injected every seven days, showed stronger antitumor effect than the free ES injected for 14 consecutive days. Our study confirmed that the CS nanoparticle is a feasible carrier for endostatin to be used in the treatment of lung cancer.


Asunto(s)
Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Quitosano/administración & dosificación , Portadores de Fármacos/administración & dosificación , Endostatinas/administración & dosificación , Nanopartículas/administración & dosificación , Animales , Carcinoma Pulmonar de Lewis/patología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Quitosano/química , Portadores de Fármacos/química , Evaluación Preclínica de Medicamentos/métodos , Endostatinas/química , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Distribución Aleatoria
4.
J Biomed Nanotechnol ; 10(3): 427-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24730238

RESUMEN

Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.


Asunto(s)
Abdomen/cirugía , Implantes Absorbibles , Hidrogeles/uso terapéutico , Polietilenglicoles/uso terapéutico , Adherencias Tisulares/prevención & control , Técnicas de Cierre de Herida Abdominal/efectos adversos , Animales , Enfermedades del Ciego/prevención & control , Ciego , Evaluación Preclínica de Medicamentos , Femenino , Hidrogeles/química , Hidrogeles/farmacocinética , Enfermedades Peritoneales/prevención & control , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Complicaciones Posoperatorias/prevención & control , Ratas , Ratas Wistar , Temperatura
5.
J Cancer Res Clin Oncol ; 134(6): 679-87, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18066596

RESUMEN

PURPOSE: IFN-inducible protein 10 (IP-10)/CXCL10 (CXC chemokine ligand 10) has been described as an antiangiogenic chemokine and displays a potent antitumor activity in vivo. In the present study, we try to investigate whether the combination therapy of hyperthermia, a physical antiangiogenic modality, with CXCL10 would completely eradicate the established solid tumors. METHODS: Immunocompetent BALB/c mice bearing Meth A fibrosarcoma were established. Mice were treated with either CXCL10 at 25 microg/kg once a day for 20 days, hyperthermia was given twice (at 42 degrees C for 1 h, on day 6 and 12 after the initiation of CXCL10), or together. Tumor volume and survival time were observed. The microvessel density was determined by CD31 immunofluorescence. Histologic analysis and assessment of apoptotic cells were also conducted in tumor tissues. RESULTS: The results showed that CXCL10 and hyperthermia inhibited the growth of Meth A fibrosarcoma and interestingly, the combination therapy enhanced the antiangiogenic effects and completely eradicated the established solid tumors. Histological examination revealed that CXCL10 + hyperthermia led to increased induction of apoptosis, tumor necrosis, and elevated lymphocyte infiltration compared with the controls. Moreover, the tumor eradicated animals developed a protective T-cell-dependent antitumor memory response against Meth A tumor cells rechallenge. CONCLUSIONS: Our finding is that the combination therapy can achieve a synergistic antitumor efficacy, supporting the idea that the combination of two antiangiogenic agents may lead to improved clinical outcome. These findings could open new perspectives in clinical antitumor therapy.


Asunto(s)
Quimiocina CXCL10/uso terapéutico , Hipertermia Inducida , Sarcoma Experimental/terapia , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Apoptosis , Línea Celular Tumoral , Quimiocina CXCL10/efectos adversos , Terapia Combinada , Femenino , Proteínas de Choque Térmico/fisiología , Memoria Inmunológica , Ratones , Ratones Endogámicos BALB C , Sarcoma Experimental/irrigación sanguínea , Sarcoma Experimental/inmunología , Sarcoma Experimental/patología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA