Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31015849

RESUMEN

To investigate the mechanism of a Bushen-Jianpi decoction (BSJPD) in liver cancer (LC) treatment, we analyzed clinical therapy data, conducted network pharmacology analysis, and performed pharmacological experimental verification in vitro and in vivo. The univariate analysis of clinical therapy showed that the BSJPD was protective factor (p < 0.05). The network pharmacology analysis showed that 9 compounds were important nodes of BSJPD-LC therapy network. In experimental verification, the rate of apoptosis increased in the liver tumors of mice treated with the BSJPD (p < 0.05); drug serum with 20 % BSJPD inhibited cell viability (p < 0.05) and reduced the expression of PI3K, the Bcl-xL/BAD ratio, and the levels of p53 and p-Akt in HepG2 cells. Moreover, licochalcone A, alisol B, and hederagenin inhibited cell viability (p < 0.05), induced cell apoptosis (p < 0.01), reduced p-Akt levels, and increased cleaved-CASP3 (p < 0.05) and p53 expression levels in HepG2 cells. These data suggest that the BSJPD prolongs the survival of LC patients and induces apoptosis and that it may be associated with the regulation of PI3K, Akt, p53, CASP3, and Bcl-xL/BAD expression.

2.
Biomed Pharmacother ; 114: 108863, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30991286

RESUMEN

Yinchenhao decoction (YCHD) is a classical Traditional Chinese Medicine (TCM) formula that has been widely used in the treatment of liver fibrosis caused by chronic hepatitis B and jaundice for more than 1800 years. The purpose of this study was to investigate the apoptosis regulation mechanisms of YCHD and its active components suppresses liver fibrosis. The active components and putative targets of YCHD were predicted by network pharmacology approach. Functional and pathway enrichment analysis were presented in the present study by using clusterProfiler. Further, experimental validation was done by using terminal deoxynucleotidyl transferase (TDT) dUTP nick end labelling (TUNEL) assay and western blotting in dimethylnitrosamine (DMN)-induced liver fibrosis rats, and cell proliferation assay, apoptosis assay, and western blotting in human hepatic L02 cells and LX2 cells. 45 active compounds in YCHD formula, 592 potential target proteins and 1191 liver fibrosis-related human genes were identified. Functional and pathway enrichment analysis indicated that YCHD obviously influenced TNF, PI3K-Akt signaling pathways. Further, In vivo experiment indicated that YCHD treatment not only attenuated the symptoms of liver fibrosis, but also decrease the apoptosis of hepatic parenchyma cells. Moreover, in vitro experiments showed that rhein, kaempferol and quercetin treatments remarkably decreased the protein levels of cleaved caspase-3 and increased p-ERK1/2, PI3K and Bcl-XL protein expression in TNF-α-stimulated L02 cells. On the contrary, rhein, kaempferol, aloe-emodin and quercetin inhibited the proliferation of LX2 cells and up-regulated the protein levels of Bax and cleaved caspase-8. In conclusion, 45 active components and 296 potential targets of YCHD against liver fibrosis were identified by the analysis of network pharmacology and transcriptomics combination. The mechanisms of YCHD against liver fibrosis were involved in the regulation of multiple targets, especially affecting the apoptosis-related signaling pathways.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Animales , Caspasa 3/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Masculino , Medicina Tradicional China/métodos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Wistar , Proteína bcl-X/metabolismo
3.
Molecules ; 24(2)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669350

RESUMEN

Fuzheng huayu formula (FZHY), an antifibrotic traditional Chinese medicine, is frequently used for the treatment of liver fibrosis. In this study, network analysis, transcriptomic analysis, assays of cell apoptosis, viability and protein expression were used for investigating the effects and mechanisms of compounds derived from FZHY on hepatic parenchymal cell (HPC) protection and hepatic stellate cell activation. Network pharmacology analysis found that 6 major compounds and 39 potential targets were important network nodes. Our analysis predicted that the active compounds of FZHY, including hederagenin, luteolin and tanshinone IIA inhibited cell apoptosis (p < 0.05), increased PI3K expression and reduced cleaved caspase 3 expression and the Bax/Bcl-w ratio (p < 0.05) in L02 cells that had apoptosis induced by TNF-α. Few significant changes caused by FZHY, hederagenin, luteolin and tanshinone IIA were observed in hepatic stellate Lx2 cells upon TGF-ß1 induction. These data suggest that FZHY is active against liver fibrosis, protects hepatic parenchymal cells from apoptosis, and recovers liver function, possibly through the effects of its active compounds hederagenin, luteolin and tanshinone IIA and is involved in the inhibition of apoptosis in HPCs, possibly through regulating the PI3K, ERK, cleaved caspase 3 and Bax/Bcl-w levels.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Transcriptoma , Animales , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/farmacocinética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Transducción de Señal/efectos de los fármacos
4.
Sci Rep ; 8(1): 15367, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337590

RESUMEN

Yinchenhao decoction (YCHD), comprising Yinchenhao (Artemisiae Scopariae Herba), Zhizi (Gardeniae Fructus) and Dahuang (Radix Rhei et Rhizoma), is widely used for treating various diseases. We aimed to investigate the bile acid metabolic mechanism of YCHD in dimethylnitrosamine (DMN)-induced liver fibrosis model. Rats received DMN (10 mg/kg, intraperitoneally) for four successive weeks for liver fibrosis induction and were treated with YCHD for the last 2 weeks. Histopathological analysis showed that YCHD prevented DMN-induced histopathological changes in liver tissues. Serum liver function in YCHD group improved. Ultraperformance liquid chromatography-mass spectrometry analysis showed that YCHD significantly restored both free and conjugated bile acid levels increased by DMN, to normal levels. RT-qPCR results showed that YCHD treatment upregulated the expression of genes related to bile acid synthesis, reabsorption, and excretion. Western blotting analysis showed that YCHD downregulated α-SMA, TGF-ß1, p-Smad3, and p-ERK1/2 expression in chenodeoxycholic acid (CDCA)-activated hepatic stellate cells (HSCs). The viability of CDCA-activated HSCs significantly increased after treatment with YCHD and PD98059 (an ERK inhibitor) compared to YCHD treatment alone. Our findings suggest that YCHD alleviated DMN-induced liver fibrosis by regulating enzymes responsible for bile acid metabolism. Additionally, it inhibits CDCA-induced HSC proliferation and activation via TGF-ß1/Smad/ERK signalling pathway.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Medicamentos Herbarios Chinos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Perfilación de la Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Ratas , Ratas Wistar , Proteínas Smad/genética , Factor de Crecimiento Transformador beta1/genética
5.
Zhongguo Zhong Yao Za Zhi ; 43(5): 1001-1007, 2018 Mar.
Artículo en Chino | MEDLINE | ID: mdl-29676100

RESUMEN

Based on the anticancer mechanism of biological alkylating agent, we designed and synthesized two alpha pinene derivatives:(1R,5S)-(6,6-dimethylbicyclo[3,1,1]hept-2-en-2-yl)methyl benzenesulfonate and (1R,5S)-(6,6-dimethylbicyclo[3,1,1]hept-2-en-2-yl)methyl 4-methylbenzenesulfonate, of which structures were confirmed by ¹H-NMR, HPLC and MS date. These two compounds showed a good inhibition of tumor cells' proliferation. Further, the computer siuulation of molecular docking and metabolic kinetics indicated that these two copounds may have stable molecular complexation with protein CDK2, which closely related to the cell cycle.


Asunto(s)
Antineoplásicos/síntesis química , Diseño de Fármacos , Monoterpenos/síntesis química , Antineoplásicos/farmacología , Monoterpenos Bicíclicos , Línea Celular Tumoral , Proliferación Celular , Humanos , Simulación del Acoplamiento Molecular , Monoterpenos/farmacología , Relación Estructura-Actividad
6.
Zhongguo Zhong Yao Za Zhi ; 41(21): 3996-3999, 2016 Nov.
Artículo en Chino | MEDLINE | ID: mdl-28929687

RESUMEN

To investigate the anti-hepatoma mechanism of α-pinene, HepG2 cell was treated with α-pinene and the change of cell cycle was examined by flow cytometry. The expression of miR-221, which was related the regulation of G2/M phase, was detected by quantitative Real-time PCR. Meanwhile, TargetScan and other online bioinformatics methods were used to analyze and predict the target genes of miR-221, then the expression level of related target genes were detected by quantitative Real-time PCR. The results showed that α-pinene inhibited the proliferation of HepG2 cells in dose-dependent manner. It was also proved that HepG2 cells were arrested at G2/M phase by α-pinene (P<0.05). The expression of miR-221 was down-regulated in α-pinene treated HepG2 cell. The bioinformatics analysis showed that CDKN1B/P27 and CDKN1C/P57 may be the protential targets of miR-221 and both of them were significantly up-regulated(P<0.001,P<0.05)by α-pinene treatment. According to these results, it was believed that α-pinene may inhibit the proliferation of hepatocellular carcinoma cells through arrest the cell at G2/M phase, which may be associated with the down-regulate of the miR-221 expression and up-regulate of the CDKN1B/P27 and CDKN1C/P57 expression.


Asunto(s)
MicroARNs/genética , Monoterpenos/farmacología , Pinus/química , Apoptosis/efectos de los fármacos , Monoterpenos Bicíclicos , Carcinoma Hepatocelular , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA