Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 323: 117713, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181935

RESUMEN

HEADINGS ETHNOPHARMACOLOGICAL RELEVANCE: Anshen Dingzhi prescription (ADP), which was first published in the masterpiece of traditional Chinese Medicine in the Qing Dynasty, "Yi Xue Xin Wu" (1732 CE), is documented to interrupt panic-related disorders. However, the mechanism of its action is still not clear. AIM OF THE STUDY: This study aims to investigate the effects of ADP on post-traumatic stress disorder (PTSD)-like behaviors and explore the mechanism from perspective of sirtuin1 (SIRT1)-peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α)-dependent mitochondrial function. MATERIALS AND METHODS: The changes of SIRT1-PGC-1α signal and mitochondrial function were evaluated in the hippocampus of mice receiving single prolonged stress (SPS). Later, the roles of this signaling pathway played in fear memory generalization and anxiety-like behavior in SPS mice was investigated using two agonists of this signaling pathway. On this basis, the effects of ADP (36.8 mg/kg) with definite therapeutic effects, on mitochondrial function were investigated and further confirmed by a SIRT1 inhibitor. Finally, the possible components of ADP targeting PGC-1α were monitored through bioinformatics. RESULTS: Compared with control mice, SIRT1-PGC-1α signal in the hippocampus was impaired in SPS mice, accompanied with dysfunction of mitochondria and abnormal expression of synaptic proteins. The agonists of SIRT1-PGC-1α signal, ZLN005, as well as resveratrol improved the behavioral changes of mice caused by SPS, reversed the decline of proteins in SIRT1-PGC-1α signal, mitochondrial dysfunction, and the abnormal expression of synaptic proteins. The fingerprint was established for the quality control of ADP. At a dose of 36.8 mg/kg, ADP could prevent fear memory generalization and anxiety-like behavior in SPS mice. Mechanically, ADP promoted SIRT1-PGC-1α signal and repaired mitochondrial function. Importantly, SIRT1 inhibitor, selisistat eliminated the ameliorative effects of ADP on behavioral and mitochondrial function. Through molecular docking simulation, the brain-entering components of ADP, including malkangunin, Rg5, fumarine, frutinone A, celabenzine, and inermin had high binding energy with PGC-1α. CONCLUSION: Dysfunction of SIRT1-PGC-1α-dependent mitochondrial function is attributed to SPS-triggered fear generalization and anxiety-like behavior, and ADP could improve PTSD-like behaviors likely through activating this signaling pathway.


Asunto(s)
Mitocondrias , Sirtuina 1 , Ratones , Animales , Sirtuina 1/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Prescripciones
2.
Fitoterapia ; 169: 105618, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37482307

RESUMEN

It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.


Asunto(s)
Miedo , Memoria , Estructura Molecular , Amígdala del Cerebelo/metabolismo , Fitoterapia
3.
Phytother Res ; 37(2): 759-773, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36200803

RESUMEN

Chronic traumatic stress results in various psychiatric disorders, especially posttraumatic stress disorder (PTSD). Previous study demonstrated that curculigoside (CUR) a component of Rhizoma Curculiginis prevented fear extinction and stress-induced depression-like behaviors. However, its effects on PTSD and the mechanisms are still not completely clear. In this study, we observed typical PTSD-like phenotypes, synaptic deficit, and reduction of BDNF/TrkB signaling pathway in mice receiving modified single prolonged stress and electrical stimulation (SPS&S). By contrast, systemic administration of CUR blocked PTSD-like phenotypes and synaptic deficits, including reduction of BDNF/TrkB signaling pathway, GluA1 and Arc expression. Importantly, CUR reversed the impairment of PKA signaling pathway elicited by PTSD. We further confirmed that the effects of CUR on synaptic function were through PKA signaling pathway, as H-89, an inhibitor of PKA blocked the effect of CUR on behavioral changes and BDNF/TrkB signaling pathway. Thereafter, we verified that CUR on synaptic function were through PKA pathway using direct intracerebral injection of CUR and H-89. Direct intracerebral injection of CUR activated PKA/CREB/BDNF/TrkB, which was blocked by H-89. Additionally, the docking results showed high binding energies of CUR with A2AR, AC, PRKACA, and PRKAR1A, which might indicate that CUR functions through regulating PKA signaling pathway. In conclusion, CUR prevented the behavioral changes and hippocampal synaptic deficits elicited by PTSD through activating cAMP-PKA signaling.


Asunto(s)
Trastornos por Estrés Postraumático , Ratones , Animales , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Extinción Psicológica , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Miedo , Hipocampo , Transducción de Señal
4.
Neuropharmacology ; 222: 109306, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341808

RESUMEN

Prolonged exposure (PE) therapy aiming to promote fear extinction is a useful treatment for post-traumatic stress disorder (PTSD). However, the mechanisms underlying fear extinction and effective methods used to promote fear extinction in PTSD are still lacking. In this study, we displayed dysfunctions of cyclic adenosine 3,5-monophosphate (cAMP)-protein kinase A (PKA), protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and calcium signaling in peripheral serum of PTSD patients using bioinformatics analysis. Later, we confirmed the dysfunctions of cAMP-PKA, AKT/mTOR and calcium signaling in the hippocampus of PTSD mice. Moreover, the reduction of calpain1 in the hippocampus enhanced fear memory acquisition. Single activation of PKA by systemic application of rolipram (ROL) or meglumine cyclic adenylate (M-cAMP) before re-exposure promoted fear extinction and improved anxiety-like behavior in PTSD mice. Moreover, systemic application of ROL before re-exposure improved hippocampal brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling and calpain1/AKT/mTOR signaling. Interestingly, the effects of activation of PKA could be partially blocked by TrkB antagonist, ANA-12 and mTOR inhibitor, RAPA. Finally, intranasal administration of ROL could also adjust the abnormality of fear memory and improve anxiety-like behaviors in PTSD mice. Collectively, activation of PKA could promote fear extinction, which correlated with the reduction of anxiety-like behavior. The mechanisms were related to the BDNF/TrkB and calpain1/AKT/mTOR signaling pathways. PKA activation might be a useful complementary therapy for PE in the symptom elimination of PTSD.


Asunto(s)
Miedo , Trastornos por Estrés Postraumático , Ratones , Animales , Trastornos por Estrés Postraumático/tratamiento farmacológico , Proteínas Quinasas Dependientes de AMP Cíclico , Proteínas Proto-Oncogénicas c-akt , Factor Neurotrófico Derivado del Encéfalo , Extinción Psicológica , Ansiedad/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Rolipram , Señalización del Calcio , Adenosina , Mamíferos
5.
Oxid Med Cell Longev ; 2022: 6080282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211826

RESUMEN

Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular-glia-neuron unit were further discussed.


Asunto(s)
Terapia por Acupuntura , Enfermedad de Alzheimer , MicroARNs , Enfermedad de Alzheimer/metabolismo , Animales , Cognición , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Trastornos de la Memoria/metabolismo , MicroARNs/metabolismo , Plasticidad Neuronal , Orexinas/metabolismo , Orexinas/farmacología
6.
Phytomedicine ; 101: 154139, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523115

RESUMEN

BACKGROUND: Anshen Dingzhi prescription (ADP) is an important prescription for the treatment of mental diseases in traditional Chinese medicine and is widely used to treat neuropsychiatric disorders. PURPOSE: To explore the ameliorative effect of ADP on post-traumatic stress disorder (PTSD)-like behaviors in mice and determine the underlying mechanism. METHODS: The constituents of ADP were analyzed by UPLC-Q-TOF/MS. The PTSD-like behaviors of mice subjected to single prolonged stress (SPS) were evaluated using behavioral tests. Potential pathological changes in the hippocampus were assessed by hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry (IHC) were employed to detect the expression of proteins involved in relevant signaling pathways. RESULTS: Five quality control markers (ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B, and α-asarone) were detected in the ADP solution. The ginsenoside Rg1 content in ADP was found to be 0.114 mg/g. Mice subjected to SPS showed obvious fear generalization and anxiety-like behaviors. ADP treatment prevented the behavioral changes caused by exposure to SPS. Compared with control animals, the number of normal pyramidal cells in the hippocampal CA1 region of mice exposed to SPS was decreased and the number of degenerating pyramidal cells was increased; however, ADP administration could counteract these effects. Furthermore, the protein expression of BDNF, p-TrkB, µ-calpain, PSD95, GluN2A, GluA1, p-AKT, p-mTOR, and ARC was decreased, while that of PTEN and GluN2B was increased in the hippocampus of mice subjected to SPS compared with that in control animals; however, these changes in protein expression were reversed following ADP treatment. Importantly, the ameliorative effect of ADP on PTSD-like behaviors and synaptic protein expression were inhibited by rapamycin administration. CONCLUSIONS: ADP administration improves PTSD-like behaviors in mice and this effect may be mediated through an mTOR-dependent improvement in synaptic function in the hippocampus.


Asunto(s)
Trastornos por Estrés Postraumático , Animales , Ratones , Adenosina Difosfato/farmacología , Modelos Animales de Enfermedad , Hipocampo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Front Pharmacol ; 12: 764331, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975475

RESUMEN

Cancer remains a major public health threat. The mitigation of the associated morbidity and mortality remains a major research focus. From a molecular biological perspective, cancer is defined as uncontrolled cell division and abnormal cell growth caused by various gene mutations. Therefore, there remains an urgent need to develop safe and effective antitumor drugs. The antitumor effect of plant extracts, which are characterized by relatively low toxicity and adverse effect, has attracted significant attention. For example, increasing attention has been paid to the antitumor effects of tetramethylpyrazine (TMP), the active component of the Chinese medicine Chuanqiong, which can affect tumor cell proliferation, apoptosis, invasion, metastasis, and angiogenesis, as well as reverse chemotherapeutic resistance in neoplasms, thereby triggering antitumor effects. Moreover, TMP can be used in combination with chemotherapeutic agents to enhance their effects and reduce the side effect associated with chemotherapy. Herein, we review the antitumor effects of TMP to provide a theoretical basis and foundation for the further exploration of its underlying antitumor mechanisms and promoting its clinical application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA