Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36652817

RESUMEN

Myocardial ischemia/reperfusion (MI/R) injury is a life-threatening syndrome with high morbidity and mortality. Zhishi-Xiebai-Guizhi Decoction (ZSXBGZD) is a classic traditional Chinese medicine formula, used to treat cardiovascular diseases for centuries. However, its underlying medicinal mechanism has not been clearly elucidated, which hinders its widespread application. Here, the curative effects and therapeutic mechanism of ZSXBGZD against MI/R were addressed based on an integration of pharmaceutical evaluation and cellular metabolomics. First, a hypoxia/reoxygenation (H/R) model in H9c2 cells was employed to resemble MI/R and multiple pharmacological indicators were performed to assess the efficacy of ZSXBGZD. The results showed that ZSXBGZD possessed exceptional ability in attenuating cardiomyocyte injury, concerning oxidative stress, mitochondrial dysfunction, energy acquisition and cell apoptosis. Furthermore, a cell metabolomics approach based on HILIC and UPLC-Q-TOF-MS coupled with multivariate analysis was conducted to explore the metabolic regulation of ZSXBGZD. 38 differential polar metabolites related to H/R were uncovered, and 34 of them were reversed to normal state after the treatment of ZSXBGZD, revealing the perturbations of energy metabolism and amino acid metabolism. Moreover, formula decomposition justified the combination of single herbs to form ZSXBZGD and confirmed the pivotal status of Allii Macrostemonis Bulbus and Trichosanthis Fructus.


Asunto(s)
Hipoxia , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Hipoxia/metabolismo , Estrés Oxidativo , Apoptosis
2.
J Integr Plant Biol ; 62(3): 349-359, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31957138

RESUMEN

Enriching zinc (Zn) and selenium (Se) levels, while reducing cadmium (Cd) concentration in rice grains is of great benefit for human diet and health. Large natural variations in grain Zn, Se, and Cd concentrations in different rice accessions enable Zn/Se-biofortification and Cd-minimization through molecular breeding. Here, we report the development of new elite varieties by pyramiding major quantitative trait loci (QTLs) that significantly contribute to high Zn/Se and low Cd accumulation in grains. A chromosome segment substitution line CSSLGCC7 with the PA64s-derived GCC7 allele in the 93-11 background, exhibited steadily higher Mn and lower Cd concentrations in grains than those of 93-11. This elite chromosome segment substitution line (CSSL) was used as the core breeding material to cross with CSSLs harboring other major QTLs for essential mineral elements, especially CSSLGZC6 for grain Zn concentration and CSSLGSC5 for grain Se concentration. The CSSLGCC7+GZC6 and CSSLGCC7+GSC5 exhibited lower Cd concentration with higher Zn and Se concentrations in grains, respectively. Our study thus provides elite materials for rice breeding targeting high Zn/Se and low Cd concentrations in grains.


Asunto(s)
Cadmio/metabolismo , Oryza/metabolismo , Selenio/metabolismo , Zinc/metabolismo , Alelos , Grano Comestible/genética , Grano Comestible/metabolismo , Oryza/genética , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA