Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552437

RESUMEN

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Estrés Psicológico , Animales , Medicamentos Herbarios Chinos/farmacología , Estrés Psicológico/tratamiento farmacológico , Masculino , Ratas , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Enfermedades Gastrointestinales/tratamiento farmacológico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Sistemas Neurosecretores/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Citrus/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 49(2): 285-293, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403304

RESUMEN

The 21st century is a highly information-driven era, and traditional Chinese medicine(TCM) pharmacy is also moving towards digitization and informatization. New technologies such as artificial intelligence and big data with information technology as the core are being integrated into various aspects of drug research, manufacturing, evaluation, and application, promoting interaction between these stages and improving the quality and efficiency of TCM preparations. This, in turn, provides better healthcare services to the general population. The deep integration of emerging technologies such as artificial intelligence, big data, and cloud computing with the TCM pharmaceutical industry will innovate TCM pharmaceutical technology, accelerate the research and industrialization process of TCM pharmacy, provide cutting-edge technological support to the global scientific community, boost the efficiency of the TCM industry, and promote economic and social development. Drawing from recent developments in TCM pharmacy in China, this paper discussed the current research status and future trends in digital TCM pharmacy, aiming to provide a reference for future research in this field.


Asunto(s)
Medicamentos Herbarios Chinos , Farmacia , Humanos , Medicina Tradicional China , Inteligencia Artificial , Tecnología Farmacéutica , Industria Farmacéutica
3.
Free Radic Biol Med ; 188: 386-394, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792241

RESUMEN

Maternal diabetes has been widely reported to adversely affect oocyte quality. Although various molecules and pathways may be involved in this process, strategies to prevent maternal diabetes-induced deterioration of oocyte quality remain unexplored. Melatonin is synthesized by the pineal gland and has been shown to have beneficial effects on oocyte quality owing to its antioxidative function. In the present study, we found that the exposure of oocytes of diabetic mice to melatonin, in vitro, alleviated aberrant oocyte maturation competence. Notably, melatonin supplementation attenuated defects in spindle organization and chromosome alignment by mediating the expression of TPX2 and pericentrin localization. Importantly, melatonin eliminated the accumulation of reactive oxygen species and increased the cytosolic Ca2+ levels in diabetic oocytes by maintaining mitochondrial function. Moreover, the occurrence of autophagy and apoptosis was reversed in diabetic oocytes after melatonin exposure via decreased LC3ß expression. Collectively, our findings provide evidence that melatonin supplementation can protect oocytes from maternal diabetes-related meiotic defects and poor egg quality, providing a potential strategy for improving oocyte quality in assisted reproductive technologies.


Asunto(s)
Diabetes Mellitus Experimental , Melatonina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Meiosis , Melatonina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Mitocondrias/metabolismo , Oocitos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA