Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(42): 35745-35759, 2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30360122

RESUMEN

Cervical cancer remains the second-most prevalent female malignancy around the world, leading to a great majority of cancer-related mortality that occurs mainly in developing countries. Developing an effective and low-cost vaccine against human papillomavirus (HPV) infection, especially in medically underfunded areas, is urgent. Compared with vaccines based on HPV L1 viruslike particles (VLPs) in the market, recombinant HPV L1 pentamer expressed in Escherichia coli represents a promising and potentially cost-effective vaccine for preventing HPV infection. Hybrid particles comprising a polymer core and lipid shell have shown great potential compared to conventional aluminum salts adjuvant and is urgently needed for HPV L1 pentamer vaccines. It is well-reported that particle sizes are crucial in regulating immune responses. Nevertheless, reports on the relationship between the particulate size and the resultant immune response have been in conflict, and there is no answer to how the size of particles regulates specific immune response for HPV L1 pentamer-based candidate vaccines. Here, we fabricated HPV 16 L1 pentamer-loaded poly(d,l-lactide- co-glycolide) (PLGA)/lecithin hybrid particles with uniform sizes (0.3, 1, and 3 µm) and investigated the particle size effects on antigen release, activation of lymphocytes, dendritic cells (DCs) activation and maturation, follicular helper CD4+ T (TFH) cells differentiation, and release of pro-inflammatory cytokines and chemokines. Compared with the other particle sizes, 1 µm particles induced more powerful antibody protection and yielded more persistent antibody responses, as well as more heightened anamnestic responses upon repeat vaccination. The superior immune responses might be attributed to sustainable antigen release and robust antigen uptake and transport and then further promoted a series of cascade reactions, including enhanced DCs maturation, increased lymphocytes activation, and augmented TFH cells differentiation in draining lymph nodes (DLNs). Here, a powerful and economical platform for HPV vaccine and a comprehensive understanding of particle size effect on immune responses for HPV L1 pentamer-based candidate vaccines are provided.


Asunto(s)
Proteínas de la Cápside , Papillomavirus Humano 16/inmunología , Inmunidad Celular , Nanopartículas/química , Proteínas Oncogénicas Virales , Vacunas contra Papillomavirus , Vacunación , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas de la Cápside/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/farmacología , Células Dendríticas/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Oncogénicas Virales/química , Proteínas Oncogénicas Virales/inmunología , Proteínas Oncogénicas Virales/farmacología , Vacunas contra Papillomavirus/química , Vacunas contra Papillomavirus/inmunología , Vacunas contra Papillomavirus/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología
2.
J Mater Chem B ; 5(8): 1611-1623, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32263933

RESUMEN

Functional calcium carbonate (CaCO3) particles of micron and submicron sizes used in catalysis and biomedicine have attracted considerable attention for decades. In this paper, the process parameters for CaCO3 crystallization were systematically investigated. Our experimental results demonstrated the significance of temperature during fabrication. Under the optimized conditions, various uniform-sized and spherical CaCO3 microparticles (MPs) with average diameters from 0.8 µm to 5 µm were facilely and rapidly fabricated via different mixing strategies including mechanical stirring, homogenization, and ultrasonication. The physicochemical characteristics of the CaCO3 microspheres were evaluated. And, the hepatitis B surface antigen (HBsAg) used as a model antigen was encapsulated into the particles (1 µm and 4 µm) for investigating the immune responses elicited after vaccination. In vitro, dendritic cells (DCs) were significantly activated by the MP-based vaccine formulations with up-regulated co-stimulatory molecules expression of CD40 and CD83. After immunization, CaCO3 MPs loaded with HBsAg induced greater lymphocyte activation, more cytokine secretion, higher antigen-specific IgG titers and more memory T cell generation to protect against reinfection. Therefore, the CaCO3 MPs, especially the 1 µm particles, could induce strong cellular and humoral immune responses, probably because of easier uptake and more efficient antigen-presentation by DCs. With the advantages of good biocompatibility, high loading capacity and easy preparation, they could be potentially useful as vaccine adjuvants. These results might provide further design principles for potent inorganic particulate adjuvant and delivery systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA