Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EBioMedicine ; 90: 104518, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36933413

RESUMEN

BACKGROUND: Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. METHODS: In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. FINDINGS: We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex; however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. INTERPRETATION: This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. FUNDING: This study was supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, and the Natural Science Foundation of Beijing.


Asunto(s)
COVID-19 , Ratones , Humanos , Femenino , Animales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Proteómica , Ratones Transgénicos , Pulmón , Hipocampo , Riñón , Tálamo , Modelos Animales de Enfermedad
2.
Proteomics ; 22(17): e2100381, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35644922

RESUMEN

The lysine succinylation (Ksucc) is involved in many core energy metabolism pathways and affects the metabolic process in mitochondria, making this modification highly valuable for studying diseases related to mitochondrial disorders. In this paper, we used liquid chromatography with tandem mass spectrometry (LC-MS/MS) to perform the first global profiling of succinylation in human lungs under normal physiological conditions. Using an MS-based platform, we identified 1485 Ksucc sites in 568 proteins. We then compared these sites with those previously identified in human succinylome studies to investigate specific succinylated proteins and identify their possible functions in the lung and to explore the substrate preferences of succinylation modifiers in different cell lines and at different subcellular localizations. Our work expands the succinylation database and supplementary materials on the human succinylome and will thus help in further study of the function of Ksucc and regulation under related physiological and pathological conditions.


Asunto(s)
Lisina , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Pulmón/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
3.
Front Endocrinol (Lausanne) ; 12: 693669, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603197

RESUMEN

Background: Solitary intracranial hypothalamic mass occurs rarely. The etiological diagnosis of solitary hypothalamus lesion is challenging and often unachievable. Although previous studies indicated that lesions affecting the hypothalamus often cause significant metabolic disorders, few reports about the metabolic disturbances of patients with solitary hypothalamic mass have been reported. Method: Twenty-five patients with solitary hypothalamus lesions who had been evaluated and treated in Huashan Hospital from January 2010 to December 2020 were retrospectively enrolled. The clinical manifestations, radiological features, endocrine and metabolic disorders, and pathology were analyzed. Results: The male to female ratio was 5/20. The median age of onset was 22 (19, 35) years old. The most common initial symptom was polydipsia/polyuria (19/25, 76.0%) and amenorrhea (9/20, 45.0%). A high prevalence of hypopituitarism of different axes was found, with almost all no less than 80%. Central hypogonadism (21/22, 95.5%) and central diabetes insipidus (19/21, 90.5%) were the top two pituitary dysfunctions. Conclusive diagnoses were achieved by intracranial surgical biopsy/resection or stereotactic biopsy in 16 cases and by examining extracranial lesions in 3 cases. The pathological results were various, and the most common diagnoses were Langerhans cell histiocytosis (7/19) and hypothalamitis (5/19). The mean timespan from onset to diagnosis in the 19 cases was 34 ± 26 months. Metabolic evaluations revealed remarkable metabolic disorders, including hyperlipidemia (13/16, 81.3%), hyperglycemia (10/16, 62.5%), hyperuricemia (12/20, 60%), overweight/obesity (13/20, 65.0%), and hepatic adipose infiltration (10/13, 76.6%). Conclusion: Either surgical or stereotactic biopsy will be a reliable and relatively safe procedure to help to confirm the pathological diagnosis of solitary hypothalamic mass. Metabolic disorders were severe in patients with solitary hypothalamic mass. The management of such cases should cover both the treatment of the primary disease, as well as the endocrine and metabolic disorders.


Asunto(s)
Enfermedades Hipotalámicas/diagnóstico , Enfermedades Metabólicas/diagnóstico , Adolescente , Adulto , Anciano , Biopsia , Glucemia , Índice de Masa Corporal , Femenino , Hormonas/sangre , Humanos , Enfermedades Hipotalámicas/sangre , Enfermedades Hipotalámicas/patología , Enfermedades Hipotalámicas/cirugía , Hipotálamo/diagnóstico por imagen , Hipotálamo/patología , Hipotálamo/cirugía , Imagen por Resonancia Magnética , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
4.
J Endocrinol ; 248(2): 133-143, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33258801

RESUMEN

γ-Aminobutyric acid (GABA) and glucagon-like peptide-1 receptor agonist (GLP-1RA) improve rodent ß-cell survival and function. In human ß-cells, GABA exerts stimulatory effects on proliferation and anti-apoptotic effects, whereas GLP-1RA drugs have only limited effects on proliferation. We previously demonstrated that GABA and sitagliptin (Sita), a dipeptidyl peptidase-4 inhibitor which increases endogenous GLP-1 levels, mediated a synergistic ß-cell protective effect in mice islets. However, it remains unclear whether this combination has similar effects on human ß-cell. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-gamma mice with streptozotocin-induced diabetes, and then treated them with GABA, Sita, or both. The oral administration of either GABA or Sita ameliorated blood glucose levels, increased transplanted human ß-cell counts and plasma human insulin levels. Importantly, the combined administration of the drugs generated significantly superior results in all these responses, as compared to the monotherapy with either one of them. The proliferation and/or regeneration, improved by the combination, were demonstrated by increased Ki67+, PDX-1+, or Nkx6.1+ ß-cell numbers. Protection against apoptosis was also significantly improved by the drug combination. The expression level of α-Klotho, a protein with protective and stimulatory effects on ß cells, was also augmented. Our study indicates that combined use of GABA and Sita produced greater therapeutic benefits, which are likely due to an enhancement of ß-cell proliferation and a decrease in apoptosis.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , GABAérgicos/uso terapéutico , Fosfato de Sitagliptina/uso terapéutico , Ácido gamma-Aminobutírico/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Glucemia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , GABAérgicos/farmacología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Masculino , Ratones Endogámicos NOD , Persona de Mediana Edad , Fosfato de Sitagliptina/farmacología , Ácido gamma-Aminobutírico/farmacología
5.
Biomed Res Int ; 2018: 8359013, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30581869

RESUMEN

OBJECTIVE: Oxidant stress plays an important role in the development of diabetic cardiomyopathy. Previously we reported that Astragalus polysaccharides (APS) rescued heart dysfunction and cardinal pathological abnormalities in diabetic mice. In the current study, we determined whether the effect of APS on diabetic cardiomyopathy was associated with its impact on oxidant stress. METHODS: Db/db diabetic mice were employed and administered with APS. The hematodynamics, cardiac ultra-structure, apoptosis, and ROS formation of myocardium were assessed. The cardiac protein expression of apoptosis target genes (Bax, Bcl-2, and caspase-3) and oxidation target genes (Gpx, SOD2, t/p-JNK, catalase, t/p-p38 MAPK, and t/p-ERK) were evaluated, respectively. RESULTS: APS therapy improved hematodynamics and cardinal ultra-structure with reduced apoptosis and ROS formation in db/db hearts. In addition, APS therapy inhibited the protein expression of apoptosis target genes (Bax, Bcl-2, and caspase-3) and regulated the protein expression of oxidation target genes (enhancing Gpx, SOD2, and catalase, while reducing t/p-JNK, t/p-ERK, and t/p-p38 MAPK) in db/db hearts. CONCLUSION: Our findings suggest that APS has benefits in diabetic cardiomyopathy, which may be partly associated with its impact on cardiac oxidant stress.


Asunto(s)
Planta del Astrágalo/química , Cardiomiopatías Diabéticas/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Oxidantes/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA