Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2454-2463, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32495606

RESUMEN

Plasmodium culture in vitro is often used as an antimalarial drug evaluation model, but the lifecycle of P. falciparum culture in vitro tends to be disordered, which affects the research and evaluation of antimalarial drug mechanism in vitro. By combining magnetic bead separation method with sorbitol synchronization method, a synchronization method was constructed to quickly acquire different lifecycles of P. falciparum and obtain large amounts of parasite with a narrow synchronization window in a short period. Furthermore, the dihydroartemisinin(DHA) was used to treat the early trophozoite phase of P. falciparum 3 D7 for 4 h. Then mRNA was extracted and RNA-seq was conducted to analyze the differential expression of mRNA after drug treatment and obtain the differential gene expression profile. Differential expression of up-regulated genes and down-regulated genes was analyzed according to the screening criteria of |log_2FC|>1 and P<0.05. There, 262 genes were up-regulated and 77 genes were down-regulated. GO functional enrichment analysis of all the differentially expressed genes showed that the enrichment items mainly included cell membrane components, transporter activity, serine/threonine kinase activity, Maurer's clefts(MCs), rhoptry, antigen variation and immune evasion. The enrichment of KEGG pathway included malaria, fatty acid metabolism and peroxisome. Protein-protein interaction(PPI) analysis showed that the down-regulated genes in the modules with high degree of association included rhoptry, myosin complex, transporter and other genes related to the important life activities of malaria invasion and immune escape; the up-regulated genes were mainly related to various toxic exportins of malaria, such as PfSBP1 of MCs. qRT-PCR was used to verify the expression level of some genes, and most of the results were the same as the sequencing results. SBP1 was significantly up-regulated, while some antigenic protein expression levels were down-regulated. Above all, key molecules of DHA therapy were mainly involved in the parasites' rhoptry, transporter, antigenic variation, plasmodium exportin. These results offer us many hints to guide the further studies on mechanism of artemisinin and provide a new way for development of new antimalarial drugs.


Asunto(s)
Antimaláricos , Artemisininas , Animales , Eritrocitos , Plasmodium falciparum , Transcriptoma
2.
Zhongguo Zhong Yao Za Zhi ; 45(24): 6053-6064, 2020 Dec.
Artículo en Chino | MEDLINE | ID: mdl-33496147

RESUMEN

Corona virus disease 2019(COVID-19) has brought untold human sufferings and economic tragedy worldwide. It causes acute myocardial injury and chronic damage of cardiovascular system, which has attracted much attention from researchers. For the immediate strategy for COVID-19, "drug repurposing" is a new opportunity for developing drugs to fight COVID-19. Artemisinin and its derivatives have a wide range of pharmacological activities. Recent studies have shown that artemisinin has clear cardiovascular protective effects. This paper summarizes the research progress on the pathogenesis the pathogenesis of COVID-19 in cardiovascular damage by 2019 novel coronavirus(2019-nCoV) virus from myocardial cell injury directly by 2019-nCoV virus,viral ligands competitively bind to ACE2 and then reduce the protective effect of ACE2 on cardiovascular disease, "cytokine storm" related myocardial damage, arrhythmia and sudden cardiac death induced by the infection and stress, myocardial injury by hypoxemia, heart damage side effects from COVID-19 drugs and summarizing the cardiovascular protective effects of artemisinin and its derivatives have activities of anti-arrhythmia, anti-myocardial ischemia, anti-atherosclerosis and plaque stabilization. Then analyzed the possible multi-pathway intervention effects of artemisinin-based drugs on multiple complications of COVID-19 based on its specific immunomodulatory effects, protective effects of tissue and organ damage and broad-spectrum antiviral effect, to provide clues for the treatment of cardiovascular complications of COVID-19, and give a new basis for the therapy of COVID-19 through "drug repurposing".


Asunto(s)
Artemisininas , COVID-19 , Enfermedades Cardiovasculares , Cardiopatías , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA