Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155333, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518633

RESUMEN

BACKGROUND: Targeting long non-coding RNAs (LncRNAs) is a novel and promising approach in cancer therapy. In our previous study, we investigated the effects of ailanthone (aila), the main active compound derived from the stem barks of Ailanthus altissima (Mill.) Swingle, on the growth of non-small cell lung cancer (NSCLC) cells. Although we observed significant inhibition of NSCLC cell growth of aila, the underlying mechanisms involving LncRNAs, specifically LncRNA growth arrest specific 5 (GAS5), remain largely unknown. METHODS: To further explore the impact of aila on NSCLC, we performed a series of experiments. Firstly, we confirmed the inhibitory effect of aila on NSCLC cell growth using multiple assays, including MTT, wound healing, transwell assay, as well as subcutaneous and metastasis tumor mice models in vivo. Next, we utilized cDNA microarray and RT-QPCR to identify GAS5 as the primary target of aila. To verify the importance of GAS5 in aila-induced tumor inhibition, we manipulated GAS5 expression levels by constructing GAS5 over-expression and knockdown NSCLC cell lines. Furthermore, we investigated the upstream and downstream signaling pathways of GAS5 through western blot and RT-QPCR analysis. RESULTS: Our results showed that aila effectively increased GAS5 expression, as determined by microarray analysis. We also observed that aila significantly enhanced GAS5 expression in a dose- and time-dependent manner across various NSCLC cell lines. Notably, over-expression of GAS5 led to a significant suppression of NSCLC cell tumor growth; while aila had minimal inhibitory effect on GAS5-knockdown NSCLC cells. Additionally, we discovered that aila inhibited ULK1 and autophagy, and this inhibition was reversed by GAS5 knockdown. Moreover, we found that aila up-regulated GAS5 expression by suppressing UPF1-mediated nonsense-mediated mRNA decay (NMD). CONCLUSION: In summary, our findings suggest that aila promotes GAS5 expression by inhibiting UPF1-mediated NMD, leading to the repression of ULK1-mediated autophagy and subsequent inhibitory effects on NSCLC cells. These results indicate that aila is a potent enhancer of GAS5 and holds promising potential for application in NSCLC therapy. However, our research is currently focused only on NSCLC. It remains to be determined whether aila can also inhibit the growth of other types of tumors through the UPF1/GAS5/ULK1 signaling pathway. In future studies, we can further investigate the mechanisms by which aila suppresses other types of tumors and potentially broaden the scope of its application in cancer therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ARN Largo no Codificante/genética , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Ratones Desnudos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Transactivadores/genética , Transactivadores/metabolismo , Ailanthus/química , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos BALB C , Cuassinas/farmacología , ARN Helicasas/metabolismo
2.
Environ Pollut ; 348: 123768, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493868

RESUMEN

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Tricloroetileno/metabolismo , Biodegradación Ambiental , Carbono , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Hidrógeno , Concentración de Iones de Hidrógeno
3.
J Ethnopharmacol ; 313: 116491, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37072091

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Tian-Men-Dong decoction (TD) has been able to effectively treat lung cancer in China for thousands of years. TD improves the quality of life in lung cancer patients by promoting nourishment of yin and reducing dryness, clearing the lung and removing toxins. Pharmacological studies show that TD contains active antitumour ingredients, but its underlying mechanism remains unknown. AIM OF THE STUDY: This study aims at exploring potential mechanisms of TD in the treatment of lung cancer by regulating granulocytic-myeloid-derived suppressor cells (G-MDSCs). MATERIALS AND METHODS: An orthotopic lung cancer mouse model was generated by intrapulmonary injection with LLC-luciferase cells in immunocompetent C57BL/6 mice or immunodeficient nude mice. TD/saline was orally administered once to the model mice daily for 4 weeks. Live imaging was conducted to monitor tumour growth. Immune profiles were detected by flow cytometry. H&E and ELISA were applied to test the cytotoxicity of the TD treatment. RT-qPCR and western blotting were performed to detect apoptosis-related proteins in G-MDSCs. A neutralizing antibody (anti-Ly6G) was utilized to exhaust the G-MDSCs via intraperitoneal injection. G-MDSCs were adoptively transferred from wild-type tumour-bearing mice. Immunofluorescence, TUNEL and Annexin V/PI staining were conducted to analyse apoptosis-related markers. A coculture assay of purified MDSCs and T cells labelled with CFSE was performed to test the immunosuppressive activity of MDSCs. The presence of TD/IL-1ß/TD + IL-1ß in purified G-MDSCs cocultured with the LLC system was used for ex vivo experiments to detect IL-1ß-mediated apoptosis of G-MDSCs. RESULTS: TD prolonged the survival of immune competent C57BL/6 mice in an orthotopic lung cancer model, but did not have the same effect in immunodeficient nude mice, indicating that its antitumour properties of TD are exerted by regulating immunity. TD induced G-MDSC apoptosis via the IL-1ß-mediated NF-κB signalling cascade leading to effectively weaken the immunosuppressive activity of G-MDSCs and promote CD8+ T-cell infiltration, which was supported by both the depletion and adoptive transfer of G-MDSCs assays. In addition, TD also showed minimal cytotoxicity both in vivo and in vitro. CONCLUSION: This study reveals for the first time that TD, a classic TCM prescription, is able to regulate G-MDSC activity and trigger its apoptosis via the IL-1ß-mediated NF-κB signalling pathway, reshaping the tumour microenvironment and demonstrating antitumour effects. These findings provide a scientific foundation the clinical treatment of lung cancer with TD.


Asunto(s)
Neoplasias Pulmonares , Células Supresoras de Origen Mieloide , Ratones , Animales , Ratones Desnudos , FN-kappa B/metabolismo , Calidad de Vida , Ratones Endogámicos C57BL , Neoplasias Pulmonares/metabolismo , Inmunosupresores/farmacología , Microambiente Tumoral
4.
Front Bioeng Biotechnol ; 10: 938520, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061427

RESUMEN

Oxidative stress can induce bone tissue damage and the occurrence of multiple diseases. As a type of traditional medicine, tocopherol has been reported to have a strong antioxidant effect and contributes to osteogenic differentiation. The purpose of this study was to investigate the protective effect of tocopherol on the oxidative stress of rat bone marrow-derived mesenchymal stem cells (BMSCs) and the underlying mechanisms. By establishing an oxidative stress model in vitro, the cell counting kit-8 (CCK-8), reactive oxygen species (ROS) analysis, Western blot (WB), real-time PCR (RT-PCR), alkaline phosphatase (ALP) staining, and Alizarin Red staining (ARS) evaluated the effects of tocopherol on the cell viability, intracellular ROS levels, and osteogenic differentiation in BMSCs. In addition, ferroptosis-related markers were examined via Western blot, RT-PCR, and Mito-FerroGreen. Eventually, the PI3K/AKT/mTOR signaling pathway was explored. We found that tocopherol significantly maintained the cell viability, reduced intracellular ROS levels, upregulated the levels of anti-oxidative genes, promoted the levels of osteogenic-related proteins, and the mRNA of BMSCs stimulated by H2O2. More importantly, tocopherol inhibited ferroptosis and upregulated the phosphorylation levels of PI3K, AKT, and mTOR of BMSCs upon H2O2 stimulation. In summary, tocopherol protected BMSCs from oxidative stress damage via the inhibition of ferroptosis through the PI3K/AKT/mTOR pathway.

5.
Mediators Inflamm ; 2021: 8856326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33867859

RESUMEN

Non-small-cell lung cancer (NSCLC) remains the most common malignancy with the highest morbidity and mortality worldwide. In our previous study, we found that a classic traditional Chinese medicine (TCM) formula Ze-Qi-Tang (ZQT), which has been used in the treatment of respiratory diseases for thousands of years, could directly inhibit the growth of human NSCLC cells via the p53 signaling pathway. In this study, we explored the immunomodulatory functions of ZQT. We found that ZQT significantly prolonged the survival of orthotopic lung cancer model mice by modulating the tumor microenvironment (TME). ZQT remarkably reduced the number of MDSCs (especially G-MDSCs) and inhibited their immunosuppressive activity by inducing apoptosis in these cells via the STAT3/S100A9/Bcl-2/caspase-3 signaling pathway. When G-MDSCs were depleted, the survival promotion effect of ZQT and its inhibitory effect on lung luminescence signal disappeared in tumor-bearing mice. This is the first study to illustrate the immunomodulatory effect of ZQT in NSCLC and the underlying molecular mechanism.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Granulocitos/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Células Supresoras de Origen Mieloide/efectos de los fármacos , Animales , Calgranulina B/fisiología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasa 3/fisiología , Línea Celular Tumoral , Medicamentos Herbarios Chinos/uso terapéutico , Granulocitos/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/patología , Proteínas Proto-Oncogénicas c-bcl-2/fisiología , Factor de Transcripción STAT3/fisiología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral
6.
Pharm Biol ; 59(1): 47-53, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33399495

RESUMEN

CONTEXT: Therapeutic benefits of immunotherapy are restricted by cancer immune-resistance mechanisms. Rediocide-A (Red-A), a natural product extracted from Traditional Chinese Medicine, is a promising agent to battle against cancer which acts as an immune checkpoint inhibitor. OBJECTIVE: To investigate the effect of Red-A on NK-cell tumouricidal activity. MATERIALS AND METHODS: NK cells were co-cultured with A549 or H1299 cells and treated with 10 or 100 nM Red-A for 24 h. Cells treated with 0.1% dimethyl sulphoxide (DMSO) was employed as vehicle control. NK cell-mediated cytotoxicity was detected by biophotonic cytotoxicity and impedance assay. Degranulation, granzyme B, NK cell-tumour cell conjugates and ligands profiling were detected by flow cytometry. Interferon-γ (IFN- γ) production was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Red-A increased NK cell-mediated lysis of A549 cells by 3.58-fold (21.86% vs. 78.27%) and H1299 cells by 1.26-fold (59.18% vs. 74.78%), compared to vehicle control. Granzyme B level was increased by 48.01% (A549 cells) and 53.26% (H1299 cells) after 100 nM Red-A treatment. INF-γ level was increased by 3.23-fold (A549 cells) and 6.77-fold (H1299 cells) after 100 nM Red-A treatment. Red-A treatment down-regulated the expression level of CD155 by 14.41% and 11.66% in A549 cells and H1299 cells, respectively, leading to the blockade of tumour immuno-resistance to NK cells. CONCLUSIONS: Red-A overcomes immuno-resistance of NSCLCs to NK cells by down-regulating CD155 expression, which shows the possibility of developing checkpoint inhibitors targeting TIGIT/CD155 signalling to overcome immuno-resistance of cancer cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Diterpenos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Células Asesinas Naturales/efectos de los fármacos , Macrólidos/administración & dosificación , Receptores Virales/antagonistas & inhibidores , Células A549 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Humanos , Células Asesinas Naturales/inmunología , Receptores Virales/biosíntesis , Receptores Virales/inmunología
7.
J Cell Mol Med ; 25(6): 2900-2908, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33506637

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. As an ancient therapy, moxibustion has been used to treat cancer-related symptoms in clinical practice. However, its antitumour effect on NSCLC remains largely unexplored. In the present study, a Lewis lung cancer (LLC) xenograft tumour model was established, and grain-sized moxibustion (gMoxi) was performed at the acupoint of Zusanli (ST36). Flow cytometry and RNA sequencing (RNA-Seq) were used to access the immune cell phenotype, cytotoxicity and gene expression. PK136, propranolol and epinephrine were used for natural killer (NK) cell depletion, ß-adrenoceptor blockade and activation, respectively. Results showed that gMoxi significantly inhibited LLC tumour growth. Moreover, gMoxi significantly increased the proportion, infiltration and activation of NK cells, whereas it did not affect CD4+ and CD8+ T cells. NK cell depletion reversed gMoxi-mediated tumour regression. LLC tumour RNA-Seq indicated that these effects might be related to the inhibition of adrenergic signalling. Surely, ß-blocker propranolol clearly inhibited LLC tumour growth and promoted NK cells, and gMoxi no longer increased tumour regression and promoted NK cells after propranolol treatment. Epinephrine could inhibit NK cell activity, and gMoxi significantly inhibited tumour growth and promoted NK cells after epinephrine treatment. These results demonstrated that gMoxi could promote NK cell antitumour immunity by inhibiting adrenergic signalling, suggesting that gMoxi could be used as a promising therapeutic regimen for the treatment of NSCLC, and it had a great potential in NK cell-based cancer immunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Inmunomodulación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Moxibustión , Transducción de Señal , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Inmunofenotipificación , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Activación de Linfocitos , Masculino , Ratones , Moxibustión/métodos , Receptores Adrenérgicos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Anticancer Drugs ; 31(10): 997-1003, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33065690

RESUMEN

Lung cancer always ranks first in the number of cancer deaths every year, accounting for 18.4% of total cancer deaths in 2018. Metastasis is the main cause of death in lung cancer patients. The identification of bioactive components of traditional Chinese medicine is very important for the development of novel reagents against non-small cell lung cancer (NSCLC). Rosthorin A has originated from Rabdosia rosthornii (Diels) Hara which excerpts from 'Chinese materia medica', and is known to have 'clear heat phlegm' properties in the folk. Little is known about the biological functions and mechanisms of Rosthorin A in cancer cells at present. The role of EMT in metastasis of a tumor cell is self-evident. Slug is an important EMT inducer, which is related to the development of lung cancer. Cell growth, clone assay, cell migration, cell invasion, and protein expression, and NSCLC transplanted tumor growth were performed in A549, H1299, and H1975 cells. Rosthorin A significantly inhibited the growth of NSCLC cells, it could prolong the survival of nude mice. Rosthorin A inhibited the migration and invasion of A549, H1299, and H1975 cells. Rosthorin A up-regulated E-cadherin expression level and down-regulated the expression of ß-catenin, N-cadherin, vimentin, Slug, and Twist. Rosthorin A could promote the expression of E-cadherin and inhibit the development of EMT by downregulating Slug, to inhibit the development and metastasis of NSCLC cells. In summary, Rosthorin A could be used as a promising candidate for the treatment of NSCLC patients with recurrence and metastasis.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Polifenoles/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/química , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Proteínas Nucleares/metabolismo , Polifenoles/química , Factores de Transcripción de la Familia Snail/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Vimentina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
9.
Cancer Lett ; 493: 167-177, 2020 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-32829007

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer with high incidence and mortality. Accumulating studies have shown that traditional Chinese medicine (TCM) and its active ingredients have good anti-tumor activity. However, the anti-tumor effect of Thevebioside (THB), an active ingredient from TCM, is still unknown in NSCLC. In this study, to our best knowledge, it was the first time to report the underlying mechanism of its tumor-suppressive activity in NSCLC based on our previous high-throughput screening data. We further demonstrated that THB effectively inhibited the proliferation of NSCLC cells (A549 and H460) by inducing cellular apoptosis rather than cell cycle arrest. Notably, it was demonstrated that SRC-3 was significantly down-regulated after THB treatment dependent on ubiquitin-proteasome-mediated degradation, which subsequently inhibited the IGF-1R-PI3K-AKT signaling pathway and promoted apoptosis via both in vivo and in vitro experiments. Collectively, THB exerted inhibitory effect on tumor growth of NSCLC through inhibiting SRC-3 mediated IGF-1R-PI3K-AKT signaling by ubiquitination to induce cellular apoptosis with minimal toxicity no matter in vitro or vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Glicósidos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Coactivador 3 de Receptor Nuclear/química , Thevetia/química , Ubiquitina/metabolismo , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Ensayos de Selección de Medicamentos Antitumorales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicósidos/química , Glicósidos/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biomed Pharmacother ; 125: 109767, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32058210

RESUMEN

Diabetes mellitus (DM) is a major world health problem and one of the most studied diseases, which are highly prevalent in the whole world, it is frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy etc. Scientific research is continuously casting about for new monomer molecules from Chinese herbal medicine that could be invoked as candidate drugs for fighting against diabetes and its complications. Resveratrol (RES), a polyphenol phytoalexin, possesses diverse biochemical and physiological actions, including antiplatelet, estrogenic, and anti-inflammatory properties. It is recently gaining scientific interest for RES in controlling blood sugar and fighting against diabetes and its complications properties in various types of diabetic models. These beneficial effects seem to be due to the multiple actions of RES on cellular functions, which make RES become a promising molecule for the treatment of diabetes and diabetic complications. Here, we review the mechanism of action and potential therapeutic use of RES in prevention and mitigation of these diseases in recent ten years to provide a reference for further research and development of RES.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/prevención & control , Resveratrol/farmacología , Animales , Glucemia/efectos de los fármacos , Ensayos Clínicos como Asunto , Glucosa/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Resveratrol/química
11.
Front Neurosci ; 14: 596780, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33633527

RESUMEN

BACKGROUND AND PURPOSE: Neuropathic pain is the typical symptom of brachial plexus root avulsion (BPRA), and no effective therapy is currently available. Electroacupuncture (EA), as a complementary and alternative therapy, plays a critical role in the management of pain-associated diseases. In the present study, we aimed to reveal the peripheral immunological mechanism of EA in relieving the pain of BPRA through the IL-17-CD4+ T lymphocyte-ß-endorphin axis. METHODS: After receiving repeated EA treatment, the pain of BPRA in rats along with the expressions of a range of neurotransmitters, the contents of inflammatory cytokines, and the population of lymphocytes associated were investigated. CD4+ T lymphocytes were either isolated or depleted with anti-CD4 monoclonal antibody. The titers of IL-17A, interferon-γ (IFN-γ), and ß-endorphin were examined. The markers of T lymphocytes, myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), macrophages, and natural killer (NK) cells were assessed. The activation of the nuclear transcription factor κB (NF-κB) signaling pathway was tested. RESULTS: The pain of BPRA was significantly relieved, and the amount of CD4+ T lymphocytes was increased after EA treatment. The release of ß-endorphin was up-regulated with the up-regulation of IL-17A in CD4+ T lymphocytes. The titer of IL-17A was enhanced, leading to an activated NF-κB signaling pathway. The release of ß-endorphin and the analgesic effect were almost completely abolished when CD4+ T lymphocytes were depleted. CONCLUSION: We, for the first time, showed that the neuropathic pain caused by BPRA was effectively relieved by EA treatment via IL-17-CD4+ T lymphocyte-ß-endorphin mediated peripheral analgesic effect, providing scientific support for EA clinical application.

12.
Front Pharmacol ; 10: 1333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780946

RESUMEN

Background: The tumor microenvironment (TME) has a deep influence on cancer progression and has become into a new target for cancer treatment. In our previous study, we found that Yu-Ping-Feng (YPF), an ancient Chinese herbal decoction, significantly inhibited the Lewis lung cancer (LLC) tumor growth in a subcutaneous xenograft tumor model, and prolonged the survival of tumor-bearing mice. But the regulation of Yu-Ping-Feng on tumor microenvironment is unknown. Methods: To access the effect of Yu-Ping-Feng on non-small cell lung cancer, an orthotopic luciferase stably expressed Lewis lung cancer tumor model was established on C57BL/6 mice, and then the survival and the tumor growth were evaluated. To address the tumor microenvironment immune regulation, the percentages of CD4+ T cells, CD8+ T cells, natural killer cells (NK), regulatory T cells (Treg), macrophages, and myeloid-derived suppressor cells (MDSC) in spleens and tumor tissues, the macrophage polarization and CD4+ T cell cytotocixity were analyzed by flow cytometry, biophotonic cell killing activity assay, real-time PCR and western-blot. Results: Yu-Ping-Feng significantly prolonged orthotopic lung tumor-bearing mouse survival, and increased the percentages of CD4+ T cell and M1 macrophages and the cytotoxicity of CD4+ T cells. Yu-Ping-Feng significantly enhanced macrophage-mediated lysis of LLC in a concentration-dependent manner, and had no effect on CD4+ T cell-mediated lysis of LLC, but significantly increased CD4+ T cell-mediated lysis after co-incubated with macrophages. In addition, Yu-Ping-Feng induced M1 macrophage polarization through promoting the phosphorylation of STAT1. Conclusion: Yu-Ping-Feng induced M1 macrophages polarization, and then activated CD4+ T lymphocytes, resulting in killing of LLC cells. Yu-Ping-Feng was a potent regulator of M1 macrophage polarization and might have a promising application in tumor immunotherapy.

13.
J Ethnopharmacol ; 234: 180-188, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30660711

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ze-Qi-Tang (ZQT), a classic Chinese herbal formula, has been for over thousand years used for the treatment of several respiratory ailments like cough, asthma, hydrothorax and lung cancer. AIM OF STUDY: Cumulative literature on ZQT herbal formula reveals that its several constituent components are potent inducer of apoptosis in different cancer cells. However, the activity of ZQT against non-small-cell-lung cancer (NSCLC) has not been previously examined. The aim of the study is to investigate the molecular mechanism of ZQT on NSCLC cells. MATERIALS AND METHODS: Cell growth were determined by CCK-8 and colony formation assay. Induction of cellular apoptosis or arrest of cell cycle were determined by flow cytometric analysis using annexin V/ propidium iodide, Hoechst 33342 or TUNEL staining method. In some assay p53 activity of NSCLC ( A549 and H460) cells were blocked with pifithrin-a, prior to treatment with ZQT. The level of expression of cell cycle and apoptosis related marker proteins were estimated by western blot. The anticancer activity of ZQT in vivo were monitored in nude mice that were induced with tumor by subcutaneous inoculation of A549 cells and then treated by ZQT(100 mg/kg,200 mg/kg,400 mg/kg) gavaging for 30 days. Mice' body weight and tumor volume were measured weekly. The survival carve was recorded. Apoptosis from mice' tissue was observed by TUNEL assay. Pathological histology of liver, kidney and heart were detected by H&E staining, and its functions were tested by ELISA. RESULTS: Dose- and time-dependent inhibition of proliferation of NSCLC ( A549 and H460) cells by ZQT therapy along with induction of cell cycle arrest at G0/G1 phase were observed. The arrest of cell cycle arrest and inhibition of cellular proliferation were associated with up regulation of p53 along with down regulation of Cyclin B1 and Cdk2 indicating a mitochondrial related induction of apoptosis with ZQT. A reversal of ZQT-induced apoptosis and G0/G1 arrest was observed with pifithrin-a pretreatment. ZQT was also found to suppress the progression of tumor growth in mouse xenograft models and prolong survival. In addition, no hepato- or nephro- or cardio-toxicity with ZQT treatment were detected in mice. CONCLUSION: These findings suggest that the ZQT formula inhibits the growth of NSCLC cells and is a potential agent of complementary and alternative treatment for lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Células A549 , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/toxicidad , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/toxicidad , Humanos , Neoplasias Pulmonares/patología , Masculino , Medicina Tradicional China/métodos , Ratones , Ratones Desnudos , Factores de Tiempo , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Cosmet Dermatol ; 18(1): 322-332, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29460390

RESUMEN

OBJECTIVE: Currently, the cosmetic and medical industries are paying considerable attention to solve or prevent skin damage or diseases, such as hyperpigmentation and oxidation and free radical damage. In this study, the effective compounds in Myrica rubra fruit were extracted and studied the biological effects of these M. rubra fruit extracts. METHODS: In this study, we extracted M. rubra fruit using solutions with various ratios of water to ethanol (100:0, 50:50, 5:95) and studied the anti-melanogenesis, anti-oxidation and radical scavenging effects of these M. rubra fruit extracts on two melanoma cell lines: mouse melanoma (B16-F0) and human melanoma (A2058). The cytotoxicity, melanin synthesis, mushroom and cellular tyrosinase activities, enzyme kinetics, melanogenesis-related gene expression, melanogenesis-related protein secretion, radical DPPH scavenging activity and ROS inhibition after treatment with M. rubra fruit extracts were determined. RESULTS: The results showed that the water extract of M. rubra fruit was less cytotoxic to the melanoma cell lines, effectively inhibited melanin synthesis and tyrosinase activity and down-regulated the gene expression and protein secretion of MITF and TRP-1. In addition, the M. rubra fruit extracts also showed the abilities to scavenge DPPH free radicals and suppress ROS production. Finally, the effective compounds in the water extract were Myricetin-O-deoxyhexoside, Quercetin-O-deoxyhexoside, and Kaempferol-O-hexoside determined by LC/MS/MS assay. CONCLUSION: Overall, the water extract of M. rubra fruit is a safe and effective melanin inhibitor and anti-oxidant and can be applied widely in the fields of cosmetics and medicine.


Asunto(s)
Radicales Libres/antagonistas & inhibidores , Melaninas/biosíntesis , Melanoma/metabolismo , Myrica , Oxidación-Reducción/efectos de los fármacos , Extractos Vegetales/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Frutas , Expresión Génica/efectos de los fármacos , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Monofenol Monooxigenasa/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Extractos Vegetales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Mediators Inflamm ; 2016: 3541283, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27034590

RESUMEN

Little is known about Yu-Ping-Feng (YPF), a typical Chinese herbal decoction, for its antitumor efficacy in non-small-cell lung cancer (NSCLC). Here, we found that YPF significantly inhibited the growth of Lewis lung cancer, prolonged the survival of tumor-bearing mice, promoted NK cell tumor infiltration, increased the population of NK cells in spleen, and enhanced NK cell-mediated killing activity. The growth suppression of tumors by YPF was significantly reversed by the depletion of NK cells. Furthermore, we found that YPF significantly downregulated the expression of TGF-ß, indoleamine 2,3-dioxygenase, and IL-10 in tumor microenvironment. These results demonstrated that YPF has a NK cell-dependent inhibitory effect on Lewis lung cancer.


Asunto(s)
Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Animales , Carcinoma Pulmonar de Lewis/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interleucina-10/metabolismo , Neoplasias Pulmonares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 41(18): 3336-3341, 2016 Sep.
Artículo en Chino | MEDLINE | ID: mdl-28925114

RESUMEN

Volatile oils are important active components in traditional Chinese medicine, but their components are complicated and unstable. It is common to use cyclodextrin inclusion technique to improve the stability of volatile oils and make them easier to be prepared. At present, ß-cyclodextrin (ß-CD) is the most common inclusion material. The evaluation indicators for inclusion technique usually contain the inclusion rate and the oil content in the inclusion compound. However, the articles about the study on selecting inclusion materials for volatile oils were few. In this paper, menthol, the main active ingredient of mint volatile oil, was used as model drug, while ß-CD and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) were used as the inclusion materials. Inclusion equilibrium constant (K), solubilization ratio were investigated, and the results were combined with IR, DSC and TG to verify the formation of inclusion complexes. It turned out that in the range of 0-15 mmol•L⁻¹, the solubility of menthol was increased linearly with the increase of HP-ß-CD concentration, with AL-type phase solubility diagram, K=3 188.62 L•mol⁻¹; in the range of 0-12.5 mmol•L⁻¹, the solubility of menthol was increased linearly with the increase of ß-CD concentration, K=818.73 L•mol⁻¹. When the concentration was over 12.5 mmol•L⁻¹, the solubility of menthol appeared to be a negative deviation with the increase of ß-CD concentration, with AN-type solubility diagram. The above results showed that the inclusion behavior was different between ß-CD and HP-ß-CD, laying a foundation for further study on inclusion complexes of volatile oil.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Mentol/química , Aceites Volátiles/química , beta-Ciclodextrinas/química , Medicina Tradicional China , Solubilidad
17.
J Colloid Interface Sci ; 446: 141-9, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25666454

RESUMEN

A facile posthydrothermal treated process has been successfully established for restructuring of silica-pillared clay. This approach involves the hydrothermal treated process utilizing octadecylamine as structural agency followed by calcination at high temperatures. The formation of expanded interlayered mesopores is a result of treatment with octadecylamine hydrothermal conditions. The following calcination at higher temperatures gives silica-pillared clay larger pore volume and conserved high surface area. The kind of pore expansion process has been confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption isotherms and transmission electron microscopy (TEM). The pore expansion mechanism of silica-pillared clay is proposed. The pore expanded silica-pillared clay has been used as the catalytic supports for H3PW12O40 loading as high as 26.9%, 35.8% and 48.2% for oxidation reaction of cyclohexene using H2O2 as oxidant. The stable charge force between H3PW12O40 and negative charged clay layers, together with big and open porous structure, large pore volume, and high loading of H3PW12O40 contributes to the efficiency conversion, high selectivity toward cyclohexene epoxide and brilliant reusability.

18.
Hemoglobin ; 33(5): 339-45, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19814680

RESUMEN

Chronic blood transfusions are necessary for patients with hereditary anemia such as thalassemia, and for patients with myelodysplastic syndrome (MDS) who become anemic and transfusion-dependent. A common consequence of chronic transfusion is iron accumulation that can lead to organ damage. While there is general agreement regarding the value of iron chelation therapy to reduce the detrimental effects of iron overload in thalassemia major, the same is not true for MDS. The malignant nature of the disease and the relatively high cost of iron chelation therapy make cost-effectiveness an issue of great concern. Furthermore, the positive assessment of a drug's cost-effectiveness in one country does not necessarily justify its use in another country. More prospective studies are needed to identify the best iron chelator for patients with MDS as well as to identify those patients who will benefit most from iron chelation therapy.


Asunto(s)
Terapia por Quelación/métodos , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológico , Síndromes Mielodisplásicos/tratamiento farmacológico , Talasemia/tratamiento farmacológico , Suero Antilinfocítico/uso terapéutico , Ciclosporina/uso terapéutico , Ferritinas/sangre , Trasplante de Células Madre Hematopoyéticas , Humanos , Hierro/metabolismo , Quelantes del Hierro/administración & dosificación , Quelantes del Hierro/efectos adversos
19.
Chin J Physiol ; 51(4): 252-8, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19112883

RESUMEN

Scaffolds provide a template for cell distribution, growth, differentiation and extracellular matrix accumulation in a three-dimensional environment. Recent studies have demonstrated the potential of scaffolds for enhancing articular cartilage repair both in vitro and in vivo investigations. Mesenchymal stem cells derived from human umbilical cord blood (CBMSCs) have been characterized by their multipotency to differentiate into mesenchyme-lineage cell types, including chondrocytes, osteoblasts, and adipocytes. In this study, chondrogenesis of CBMSCs was performed in a chemically synthesized thermoreversible gelation polymer (TGP). CBMSCs were embedded in the TGP and supplemented with ascorbic acid and transforming growth factor-beta 3. After a 4-week induction, the results showed that CBMSCs formed into spheroid pellets and increased in size. The induced cells in the TGP expressed specific mRNA of collagen type II, aggrecan, and Sox9 for chondrocytes. Furthermore, CBMSCs embedded in TGP had higher ratio of glycosaminoglycan secretion to DNA content than the traditional induction method by aggregating pellet culture. These results demonstrated that chemically synthesized TGP provided a competent 3-dimentional culture environment for CBMSCs to differentiate into chondrocytes and may be applied clinically to induce chondrogenic differentiation of CBMSCs for cartilage repair in the future.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Condrocitos/citología , Condrogénesis/fisiología , Células Madre Mesenquimatosas/citología , Polímeros , Agrecanos/genética , Diferenciación Celular/fisiología , Colágeno Tipo II/genética , Sangre Fetal/citología , Expresión Génica/fisiología , Glicosaminoglicanos/metabolismo , Humanos , Células Madre Mesenquimatosas/fisiología , Factor de Transcripción SOX9/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA