Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Pediatr ; 22(1): 113, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236316

RESUMEN

BACKGROUND: Retinopathy of prematurity (ROP) remains a leading cause of childhood blindness worldwide. This study aimed to investigate whether supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) in parenteral nutrition may have beneficial effects on ROP in preterm infants. METHODS: A total of 89 preterm infants, admitted to Neonatal Intensive Care Unit (NICU) in Anhui Provincial Children's Hospital from September 2017 to August 2020, were recruited in the study. Based on the medical documents, the subjects were categorised into two groups: administration of the fish oil emulsion (n=43) containing soy oil, medium-chain-triglycerides (MCT), olive oil and fish oil (6g/dL, 6g/dL, 5g/dL and 3g/dL respectively), and the soy oil emulsion (n=46) containing 10g/dL of soy oil and MCT each. At 4 weeks of hospitalization, ROP was screened and diagnosed. Fatty acids in erythrocytes were determined using gas chromatography. RESULTS: The averaged birth weight and gestational age were 1594±296 g and 31.9±2.3 wk, 1596±263 g and 31.6±2.3 wk respectively for preterm infants in the fish oil group and soy oil group. After 4 to 6 weeks of hospitalization, among all the preterm infants, 52 developed ROP (all stages) indicating an incidence of ROP at 58.43%. Although the incidence of ROP with any stages showed no differences between the two groups, the severe ROP incidence in the group with fish oil emulsions (2.33%) was significantly lower than that in the group with soy oil emulsions (23.91%) (P<0.05). After 14 days of nutrition support, the preterm infants administered fish oil emulsions had an increase in erythrocyte DHA content, with a reduction in ratio of arachidonic acid (AA) to DHA and an increase of n-3 index. CONCLUSION: Supplementation of n-3 PUFAs through parenteral fish oil containing lipid emulsions resulted in an increase in erythrocyte DHA, and this might have beneficial effects on prevention of severe ROP in preterm infants.


Asunto(s)
Ácidos Grasos Omega-3 , Retinopatía de la Prematuridad , Emulsiones , Aceites de Pescado , Humanos , Recién Nacido , Recien Nacido Prematuro , Aceite de Soja , Triglicéridos
2.
Br J Nutr ; 124(4): 396-406, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32213218

RESUMEN

Aberration in leptin expression is one of the most frequent features in the onset and progression of obesity, but the underlying mechanisms are still unclear and need to be clarified. This study investigated the effects of the absence of gut microbiota on body weight and the expression and promoter methylation of the leptin. Male C57 BL/6 J germ-free (GF) and conventional (CV) mice (aged 4-5 weeks) were fed either a normal-fat diet (NFD) or a high-fat diet (HFD) for 16 weeks. Six to eight mice from each group, at 15 weeks, were administered exogenous leptin for 7 d. Leptin expression and body weight gain in GF mice were increased by NFD with more CpG sites hypermethylated at the leptin promoter, whereas there was no change with HFD, compared with CV mice. Adipose or hepatic expression of genes associated with fat synthesis (Acc1, Fas and Srebp-1c), hydrolysis and oxidation (Atgl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was lower, and hypothalamus expression of Pomc and Socs3 was higher in GF mice than levels in CV mice, particularly with NFD feeding. Exogenous leptin reduced body weight in both types of mice, with a greater effect on CV mice with NFD. Adipose Lep-R expression was up-regulated, and hepatic Fas and hypothalamic Socs3 were down-regulated in both types of mice. Expression of fat hydrolysis and oxidative genes (Atgl, Hsl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was up-regulated in CV mice. Therefore, the effects of gut microbiota on the leptin expression and body weight were affected by dietary fat intake.


Asunto(s)
Peso Corporal , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Leptina/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Adiposidad/genética , Animales , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Proopiomelanocortina/metabolismo , Receptores de Leptina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA