Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolism ; 119: 154749, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33722534

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrine disorder among reproductive-age women, and the leading cause of anovulatory infertility. 11ß-hydroxysteroid dehydrogenases-1 (11ß-HSD1) catalysing the conversion of inactive cortisone to active cortisol plays a crucial role in various metabolic diseases. However, whether 11ß-HSD1 is associated with the pathogenesis of PCOS and whether 11ß-HSD1 can be a treating target of PCOS remain unknown. METHODS: This study was first designed to explore the role of 11ß-HSD1 in PCOS development and the effect of selective 11ß-HSD1 inhibitor administration on PCOS treatment. Follicular fluid and granulosa cells (GCs) were collected from 32 non-PCOS patients and 37 patients with PCOS to measure cortisol and 11ß-HSDs levels. Female Sprague-Dawley rats (3-week-old) were injected with dehydroepiandrosterone (DHEA) to induce PCOS and their ovaries were collected to measure the abundance of corticosterone (CORT) and 11ß-HSDs. To determine the role of 11ß-HSD1 in PCOS development, we overexpressed 11ß-HSD1 in the ovaries of female rats (5-week-old) or knocked down the expression of 11ß-HSD1 in the ovaries from PCOS rats via lentivirus injection. After lentivirus infection, the body weights, ovarian weights, estrous cycles, reproductive hormones and morphology of the ovary were analysed in rats from different experimental groups. Then to figure out the translational potential of the selective 11ß-HSD1 inhibitor in treating PCOS, PCOS rats were treated with BVT.2733, a selective 11ß-HSD1 inhibitor and a cluster of PCOS-like traits were analysed, including insulin sensitivity, ovulatory function and fertility of rats from the Control, PCOS and PCOS+BVT groups. Rat ovarian explants and human GCs were used to explore the effect of CORT or cortisol on ovarian extracellular matrix remodelling. RESULTS: The elevated expression of 11ß-HSD1 contributed to the increased cortisol and corticosterone (CORT) concentrations observed in the ovaries of PCOS patients and PCOS rats respectively. Our results showed that ovarian overexpression of 11ß-HSD1 induced a cluster of PCOS phenotypes in rats including irregular estrous cycles, reproductive hormone dysfunction and polycystic ovaries. While knockdown of ovarian 11ß-HSD1 of PCOS rats reversed these PCOS-like changes. Additionally, the selective 11ß-HSD1 inhibitor BVT.2733 alleviated PCOS symptoms such as insulin resistance (IR), irregular estrous cycles, reproductive hormone dysfunction, polycystic ovaries, ovulatory dysfunction and subfertility. Moreover, we showed that cortisol target ovarian insulin signalling pathway and ovarian extracellular matrix (ECM) remodelling in vivo, in ovarian explants and in GCs. CONCLUSION: Elevated 11ß-HSD1 abundance in ovarian is involved in the pathogenesis of PCOS by impairing insulin signalling pathway and ECM remodelling. Selective inhibition of 11ß-HSD1 ameliorates a cluster of PCOS phenotypes. Our study demonstrates the selective 11ß-HSD1 inhibitor as a novel and promising strategy for the treatment of PCOS.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/fisiología , Piperazinas/uso terapéutico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Sulfonamidas/uso terapéutico , Tiazoles/uso terapéutico , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Infertilidad Femenina/tratamiento farmacológico , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Resistencia a la Insulina/fisiología , Ovario/enzimología , Ovario/metabolismo , Piperazinas/farmacología , Síndrome del Ovario Poliquístico/etiología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología , Tiazoles/farmacología
2.
Theranostics ; 8(17): 4633-4648, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30279728

RESUMEN

Tumor metastasis is the major cause of death for prostate cancer (PCa) patients. However, the treatment options for metastatic PCa are very limited. Epithelial-mesenchymal transition (EMT) has been reported to be an indispensable step for tumor metastasis and is suggested to associate with acquisition of cancer stem cell (CSC) attributes. We propose that small-molecule compounds that can reverse EMT or induce mesenchymal-epithelial transition (MET) of PCa cells may serve as drug candidates for anti-metastasis therapy. Methods: The promoters of CDH1 and VIM genes were sub-cloned to drive the expression of firefly and renilla luciferase reporter in a lentiviral vector. Mesenchymal-like PCa cells were infected with the luciferase reporter lentivirus and subjected to drug screening from a 1274 approved small-molecule drug library for the identification of agents to reverse EMT. The dosage-dependent effect of candidate compounds was confirmed by luciferase reporter assay and immunoblotting. Wound-healing assay, sphere formation, transwell migration assay, and in vivo intracardiac and orthotopic tumor xenograft experiments were used to evaluate the mobility, metastasis and tumor initiating capacity of PCa cells upon treatment. Possible downstream signaling pathways affected by the candidate compound treatment were analyzed by RNA sequencing and immunoblotting. Results: Drug screening identified Amlexanox, a drug used for recurrent aphthous ulcers, as a strong agent to reverse EMT. Amlexanox induced significant suppression of cell mobility, invasion, serial sphere formation and in vivo metastasis and tumor initiating capacity of PCa cells. Amlexanox treatment led to downregulation of the IKK-ɛ/ TBK1/ NF-κB signaling pathway. The effect of Amlexanox on EMT reversion and cell mobility inhibition can be mimicked by other IKK-ɛ/TBK1 inhibitors and rescued by reconstitution of dominant active NF-κB. Conclusions: Amlexanox can sufficiently suppress PCa metastasis by reversing EMT through downregulating the IKK-ɛ/TBK1/NF-κB signaling axis.


Asunto(s)
Aminopiridinas/farmacología , Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Metástasis de la Neoplasia/prevención & control , Neoplasias de la Próstata/secundario , Transducción de Señal/efectos de los fármacos , Aminopiridinas/administración & dosificación , Aminopiridinas/aislamiento & purificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Quinasa I-kappa B/metabolismo , Masculino , Ratones , Modelos Teóricos , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Resultado del Tratamiento
3.
J Pharmacol Exp Ther ; 350(3): 552-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24951279

RESUMEN

Apoptosis of renal tubular cells plays a crucial role in renal fibrosis. Astragaloside IV (AS-IV), a compound extracted from Radix Astragali, has been shown to inhibit renal tubular cell apoptosis induced by high glucose, but its role in preventing chronic renal fibrosis as well as the underlying molecular mechanisms involved still remain obscure. In this study, human kidney tubular epithelial cells induced by transforming growth factor-ß1 (TGF-ß1) were used to investigate the protective role of AS-IV in antifibrosis. As an in vivo model, mice subjected to unilateral ureteral obstruction (UUO) were administered AS-IV (20 mg/kg) by intraperitoneal injection for 7 days. AS-IV significantly alleviated renal mass loss and reduced the expression of α-smooth muscle actin, fibronectin, and collagen IV both in vitro and in vivo, suggesting that this compound functions in the inhibition of renal tubulointerstitial fibrosis. Furthermore, transferase-mediated dUTP nick-end labeling assay results both in vivo and in vitro showed that AS-IV significantly attenuated both UUO and TGF-ß1-induced cell apoptosis and prevented renal tubular epithelial cell injury in a dose-dependent manner. Western blotting results also revealed that the antiapoptotic effect of AS-IV was reflected in the inhibition of caspase-3 activation, which might be mediated primarily by the downregulation of mitogen-activated protein kinase effectors phospho-p38 and phospho-c-Jun N-terminal kinase. These data infer that AS-IV effectively attenuates the progression of renal fibrosis after UUO injury and may have a promising clinical role as a potential antifibrosis treatment in patients with chronic kidney disease.


Asunto(s)
Apoptosis/efectos de los fármacos , Enfermedades Renales/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Animales , Apoptosis/fisiología , Fibrosis/tratamiento farmacológico , Fibrosis/enzimología , Fibrosis/patología , Humanos , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Saponinas/farmacología , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA