Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396758

RESUMEN

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166714

RESUMEN

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligasas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Sequía , Filogenia , Sequías , Ubiquitinas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894803

RESUMEN

As an important hormone response gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids during plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but they are rarely reported in potato. Here, 19 StGH3 genes were isolated and characterized. Phylogenetic analysis indicated that StGH3s were divided into two categories (group I and group III). Analyses of gene structure and motif composition showed that the members of a specific StGH3 subfamily are relatively conserved. Collinearity analysis of StGH3 genes in potato and other plants laid a foundation for further exploring the evolutionary characteristics of the StGH3 genes. Promoter analysis showed that most StGH3 promoters contained hormone and abiotic stress response elements. Multiple transcriptome studies indicated that some StGH3 genes were responsive to ABA, water deficits, and salt treatments. Moreover, qRT-PCR analysis indicated that StGH3 genes could be induced by phytohormones (ABA, SA, and MeJA) and abiotic stresses (water deficit, high salt, and low temperature), although with different patterns. Furthermore, transgenic tobacco with transient overexpression of the StGH3.3 gene showed positive regulation in response to water deficits by increasing proline accumulation and reducing the leaf water loss rate. These results suggested that StGH3 genes may be involved in the response to abiotic stress through hormonal signal pathways. Overall, this study provides useful insights into the evolution and function of StGH3s and lays a foundation for further study on the molecular mechanisms of StGH3s in the regulation of potato drought resistance.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico , Cloruro de Sodio/farmacología , Agua/metabolismo , Hormonas , Regulación de la Expresión Génica de las Plantas
4.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569590

RESUMEN

Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Calcio/metabolismo , Sequías , Alcoholes del Azúcar/farmacología , Peróxido de Hidrógeno/metabolismo , Fotosíntesis
5.
Food Res Int ; 170: 112997, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316022

RESUMEN

Not least because it is adaptable to a variety of geographies and climates, potato (Solanum tuberosum L.) is grown across much of the world. Pigmented potato tubers have been found to contain large quantities of flavonoids, which have various functional roles and act as antioxidants in the human diet. However, the effect of altitude on the biosynthesis and accumulation of flavonoids in potato tubers is poorly characterized. Here we carried out an integrated metabolomic and transcriptomic study in order to evaluate how cultivation at low (800 m), moderate (1800 m), and high (3600 m) altitude affects flavonoid biosynthesis in pigmented potato tubers. Both red and purple potato tubers grown at a high altitude contained the highest flavonoid content, and the most highly pigmented flesh, followed by those grown at a low altitude. Co-expression network analysis revealed three modules containing genes which were positively correlated with altitude-responsive flavonoid accumulation. The anthocyanin repressors StMYBATV and StMYB3 exhibited a significant positive relationship with altitude-responsive flavonoid accumulation. The repressive function of StMYB3 was further verified in tobacco flowers and potato tubers. The results presented here add to the growing body of knowledge regarding the response of flavonoid biosynthesis to environmental conditions, and should aid in efforts to develop novel varieties of pigmented potatoes for use across different geographies.


Asunto(s)
Solanum tuberosum , Transcriptoma , Humanos , Solanum tuberosum/genética , Flavonoides , Altitud , Perfilación de la Expresión Génica
6.
Genes (Basel) ; 13(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36553527

RESUMEN

Whether DNA methylation modification affects the gene transcription and expression of potatoes under drought stress is still unknown. In this study, we used comparative transcriptomics to explore the expression pattern of related genes of the drought-tolerant variety Qingshu 9 (Q) and the drought-sensitive variety Atlantic (A) under drought stress and DNA methylation inhibitor treatment. The results showed that there was a significant difference in the number of DEGs between the two varieties' responses to mannitol and 5-azad C, especially when they were co-treated with two reagents, and the gene expression of Q was more sensitive to mannitol after two hours. Furthermore, we found that these differentially expressed genes (DEGs) were significantly enriched in DNA replication, transcription, translation, carbohydrate metabolism, photosynthesis, signal transduction, and glutathione metabolism. These results indicate that the difference in the background of methylation leads to the difference in drought resistance of the two varieties. The complexity of the DNA methylation of variety Q might be higher than that of variety A, and the method of methylation regulation is more refined. This study systematically expands the understanding of the molecular mechanism wherein DNA methylation regulates the response to drought stress.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/fisiología , Transcriptoma/genética , Sequías , Metilación de ADN/genética , Manitol
7.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498877

RESUMEN

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse cereal with strongly abiotic resistance. The MYB family plays a regulatory role in plant growth, development, and responses to biotic and abiotic stresses. However, the characteristics and regulatory mechanisms of MYB transcription factors in Tartary buckwheat remain unclarified. Here, this study cloned the FtMYB22 gene from Tartary buckwheat, and investigated its involvement in responding to individual water deficit and salt stress in Arabidopsis. Sequence analysis highlighted that the N-termini of FtMYB22 contained two highly conserved SANT domains and one conserved domain from the SG20 subfamily. Nucleus-localized FtMYB22 did not have individual transcriptional activation activity. Water deficiency and salt stress induced the high expression of the GUS gene, which was driven by the promoter of FtMYB22. Yeast stress experiments showed that the overexpression of FtMYB22 significantly reduced the growth activity of transgenic yeast under water deficit or salt stress. Consistently, the overexpression of FtMYB22 reduced the salt and water deficit stress resistance of the transgenic plants. In addition, physiological parameters showed that transgenic plants had lower proline and antioxidant enzyme activity under stress conditions. Compared to the wild-type (WT), transgenic plants accumulated more malondialdehyde (MDA), H2O2, and O2−; they also showed higher ion permeability and water loss rates of detached leaves under stress treatments. Notably, FtMYB22 was involved in plant stress resistance through an ABA-dependent pathway. Under stress conditions, the expression of RD29A, RD29B, PP2CA, KIN1, COR15A, and other genes in response to plant stress in transgenic lines was significantly lower than that in the WT (p < 0.05). Furthermore, yeast two-hybrid assay showed that there was a significant interaction between FtMYB22 and the ABA receptor protein RCAR1/2, which functioned in the ABA signal pathway. Altogether, FtMYB22, as a negative regulator, inhibited a variety of physiological and biochemical reactions, affected gene expression and stomatal closure in transgenic plants through the ABA-dependent pathway, and reduced the tolerance of transgenic Arabidopsis to water deficiency and salt stress. Based on these fundamental verifications, further studies would shed light on the hormone signal response mechanism of FtMYB22.


Asunto(s)
Fagopyrum , Proteínas de Plantas , Factores de Transcripción , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo , Fagopyrum/genética
8.
Genes (Basel) ; 13(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36011289

RESUMEN

The study was conducted with C31 and C80 genotypes of the potato (Solanum tuberosum L.), which are tolerant and susceptible to phosphite (Phi, H2PO3), respectively. To decipher the molecular mechanisms underlying tolerance and susceptibility to Phi in the potato, RNA sequencing was used to study the global transcriptional patterns of the two genotypes. Media were prepared with 0.25 and 0.50 mM Phi, No-phosphorus (P), and 1.25 mM (phosphate, Pi as control). The values of fragments per kilobase of exon per million mapped fragments of the samples were also subjected to a principal component analysis, grouping the biological replicates of each sample. Using stringent criteria, a minimum of 819 differential (DEGs) were detected in both C80-Phi-0.25_vs_C80-Phi-0.50 (comprising 517 upregulated and 302 downregulated) and C80-Phi-0.50_vs_C80-Phi-0.25 (comprising 302 upregulated and 517 downregulated) and a maximum of 5214 DEGs in both C31-Con_vs_C31-Phi-0.25 (comprising 1947 upregulated and 3267 downregulated) and C31-Phi-0.25_vs_C31-Con (comprising 3267 upregulated and 1947 downregulated). DEGs related to the ribosome, plant hormone signal transduction, photosynthesis, and plant-pathogen interaction performed important functions under Phi stress, as shown by the Kyoto Encyclopedia of Genes and Genomes annotation. The expressions of transcription factors increased significantly in C31 compared with C80. For example, the expressions of Soltu.DM.01G047240, Soltu.DM.08G015900, Soltu.DM.06G012130, and Soltu.DM.08G012710 increased under P deficiency conditions (Phi-0.25, Phi-0.50, and No-P) relative to the control (P sufficiency) in C31. This study adds to the growing body of transcriptome data on Phi stress and provides important clues to the Phi tolerance response of the C31 genotype.


Asunto(s)
Fosfitos , Solanum tuberosum , Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosfitos/metabolismo , Solanum tuberosum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Agric Food Chem ; 68(47): 13685-13696, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33171044

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is rich in flavonols, which are thought to be highly beneficial for human health. However, little is known about the regulatory mechanism of flavonol biosynthesis in Tartary buckwheat. In this study, we identified and characterized a novel SG7 R2R3-MYB transcription factor in Tartary buckwheat, FtMYB6. We showed that FtMYB6 is located in the nucleus and acts as a transcriptional activator. The FtMYB6 promoter showed strong spatiotemporal specificity and was induced by light. The expression of FtMYB6 showed a significant correlation with rutin accumulation in the roots, stems, leaves, and flowers. Overexpression of FtMYB6 in transgenic Tartary buckwheat hairy roots and tobacco (Nicotiana tabacum) plants significantly increased the accumulation of flavonols. In transient luciferase (LUC) activity assay, FtMYB6 promoted the activity of FtF3H and FtFLS1 promoters and inhibited the activity of the Ft4CL promoter. Collectively, our results suggest that FtMYB6 promotes flavonol biosynthesis by activating FtF3H and FtFLS1 expression.


Asunto(s)
Fagopyrum , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides , Flavonoles , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Plant Mol Biol ; 104(3): 309-325, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32833148

RESUMEN

KEY MESSAGE: FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.


Asunto(s)
Antocianinas/biosíntesis , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis , Fagopyrum/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico , Nicotiana/genética , Factores de Transcripción/química
11.
BMC Plant Biol ; 19(1): 339, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382883

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an edible cereal crop whose sprouts have been marketed and commercialized for their higher levels of anti-oxidants, including rutin and anthocyanin. UDP-glucose flavonoid glycosyltransferases (UFGTs) play an important role in the biosynthesis of flavonoids in plants. So far, few studies are available on UFGT genes that may play a role in tartary buckwheat flavonoids biosynthesis. Here, we report on the identification and functional characterization of seven UFGTs from tartary buckwheat that are potentially involved in flavonoid biosynthesis (and have varying effects on plant growth and development when overexpressed in Arabidopsis thaliana.) RESULTS: Phylogenetic analysis indicated that the potential function of the seven FtUFGT proteins, FtUFGT6, FtUFGT7, FtUFGT8, FtUFGT9, FtUFGT15, FtUFGT40, and FtUFGT41, could be divided into three Arabidopsis thaliana functional subgroups that are involved in flavonoid biosynthesis of and anthocyanin accumulation. A significant positive correlation between FtUFGT8 and FtUFGT15 expression and anthocyanin accumulation capacity was observed in the tartary buckwheat seedlings after cold stress. Overexpression in Arabidopsis thaliana showed that FtUFGT8, FtUFGT15, and FtUFGT41 significantly increased the anthocyanin content in transgenic plants. Unexpectedly, overexpression of FtUFGT6, while not leading to enhanced anthocyanin accumulation, significantly enhanced the growth yield of transgenic plants. When wild-type plants have only cotyledons, most of the transgenic plants of FtUFGT6 had grown true leaves. Moreover, the growth speed of the oxFtUFGT6 transgenic plant root was also significantly faster than that of the wild type. At later growth, FtUFGT6 transgenic plants showed larger leaves, earlier twitching times and more tillers than wild type, whereas FtUFGT15 showed opposite results. CONCLUSIONS: Seven FtUFGTs were isolated from tartary buckwheat. FtUFGT8, FtUFGT15, and FtUFGT41 can significantly increase the accumulation of total anthocyanins in transgenic plants. Furthermore, overexpression of FtUFGT6 increased the overall yield of Arabidopsis transgenic plants at all growth stages. However, FtUFGT15 shows the opposite trend at later growth stage and delays the growth speed of plants. These results suggested that the biological function of FtUFGT genes in tartary buckwheat is diverse.


Asunto(s)
Fagopyrum/genética , Genes de Plantas/genética , Glicosiltransferasas/genética , Proteínas de Plantas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Secuencia Conservada , Fagopyrum/enzimología , Flavonoides/metabolismo , Genes de Plantas/fisiología , Glicosiltransferasas/fisiología , Filogenia , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
12.
BMC Plant Biol ; 19(1): 263, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215400

RESUMEN

BACKGROUND: Because flavonoids and trichomes play crucial roles in plant defence, their formation requires fine transcriptional control by multiple transcription factor families. However, little is known regarding the mechanism of the R2R3-MYB transcription factors that regulate both flavonoid metabolism and trichome development. RESULTS: Here, we identified a unique SG4-like-MYB TF from Tartary buckwheat, FtMYB8, which harbours the C2 repression motif and an additional TLLLFR repression motif. The expression profiles of FtMYB8 combined with the transcriptional activity of PFtMYB8 promoter showed that FtMYB8 mRNA mainly accumulated in roots during the true leaf stage and flowering stage and in bud trichomes and flowers, and the expression of this gene was markedly induced by MeJA, ABA and UV-B treatments but repressed by dark treatment. Overexpression of FtMYB8 in Arabidopsis reduces the accumulation of anthocyanin/proanthocyanidin by specifically inhibiting TT12 expression, which may depend on the interaction between FtMYB8 and TT8. Interestingly, this interaction may also negatively regulate the marginal trichome initiation in Arabidopsis leaves. CONCLUSIONS: Taken together, our results suggest that FtMYB8 may fine-tune the accumulation of anthocyanin/proanthocyanidin in the roots and flowers of Tartary buckwheat by balancing the inductive effects of transcriptional activators, and probably regulate trichome distribution in the buds of Tartary buckwheat.


Asunto(s)
Antocianinas/metabolismo , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Arabidopsis , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcriptoma , Tricomas/metabolismo
13.
Plant Physiol Biochem ; 132: 238-248, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30227384

RESUMEN

Abiotic stress causes various negative impacts on plants, such as water loss, reactive oxygen species (ROS) accumulation and decreased photosynthesis. R2R3-MYB transcription factors (TFs) play crucial roles in the response of plants to abiotic stress. However, their functions in Tartary buckwheat, a strongly abiotic and resistant coarse cereal, haven't been fully investigated. In this paper, we report that a R2R3-MYB from Tartary buckwheat, FtMYB13, is not an activator of transcriptional activity but is located in the nucleus. Moreover, compared to the wild type (WT), transgenic Arabidopsis overexpressing FtMYB13 had a lower sensitivity to ABA and caused improved drought/salt tolerance, which was attributed to the higher proline content, greater photosynthetic efficiency, higher transcript abundance of some stress-related genes and the smaller amount of reactive oxygen species (ROS) and malondialdehyde (MDA) in the transgenic lines compared to WT. Consequently, our work indicates that FtMYB13 is involved in mediating plant responses to ABA, as well as salt and drought.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Sequías , Fagopyrum/genética , Tolerancia a la Sal/fisiología , Factores de Transcripción/genética , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Clorofila/metabolismo , Fagopyrum/efectos de los fármacos , Fluorescencia , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
14.
Plant Physiol Biochem ; 125: 85-94, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29427891

RESUMEN

bHLH transcription factors play important roles in the abiotic stress response in plants, but their characteristics and functions in Tartary buckwheat (Fagopyrum tataricum), a traditional coarse cereal with a strong stress tolerance, haven't been sufficiently studied. Here, we found that the expression of a bHLH gene, FtbHLH2, was induced significantly by cold treatments in Tartary buckwheat seedlings. Subcellular localization indicated that FtbHLH2 localized in nucleus. Its overexpression in Arabidopsis increased tolerance to cold. The Arabidopsis plants overexpressing FtbHLH2 displayed higher root length and photosynthetic efficiency, and had lower malondialdehyde (MDA) and reactive oxygen species (ROS) after cold treatment compared to wild type (WT) plants. Meanwhile, the expression levels of some stress-related genes in transgenic plants were remarkably higher than that in wild type under normal and/or stress conditions. Furthermore, transgenic Arabidopsis lines with the FtbHLH2 promoter had higher GUS activity after cold stress. On the whole, the results suggest that FtbHLH2 may play a positive regulatory in cold stress of Tartary buckwheat.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Respuesta al Choque por Frío , Fagopyrum/genética , Proteínas de Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fagopyrum/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA