Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 106(1): 121-125, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32430532

RESUMEN

The coprecipitation of selenium(IV) (Se) with iron(III) (Fe) is a widely practiced method for the removal of Se from mineral processing effluents, but the effect of gypsum as a major secondary mineral on the iron-selenium coprecipitation process is still of concern. In our work we first investigated the effects of pH, Fe/Se molar ratio and the neutralizing agent on the removal efficiency of Se by iron-selenium coprecipitation method. The developed two-step Fe-Se coprecipitation method (Fe/Se molar ratio of 4) was superior to the one-step Fe-Se coprecipitation method at pH 4 using CaO as base in terms of the stability of the generated Fe-Se coprecipitates. Raman experimental results indicated the iron-selenium coprecipitates had the by-product of calcium selenite. We then investigated the effect of incorporation of Se into gypsum on the coprecipitation process at different pHs. The fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) of the calcium-selenium coprecipitates showed that the Se incorporated into the structure of gypsum at pH 8-10. Therefore, this work has important implications for the development of new technologies for efficient Se removal.


Asunto(s)
Hierro , Selenio , Calcio , Sulfato de Calcio , Difracción de Rayos X
2.
Environ Sci Pollut Res Int ; 26(10): 10159-10173, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30746628

RESUMEN

Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq) concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50-50% mixture. The reduction efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8-n phases. The reduction efficiency of Se(IV)(aq) to bulk Se0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0, while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8-n formed. This work helps to guide the removal, reduction effectiveness, and products formed from AA, TH, and a 50-50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chloride processing operations, and acid mine drainage/acid rock drainage tailings. Graphical Abstract ᅟ.


Asunto(s)
Ácido Ascórbico/química , Modelos Químicos , Ácido Selénico/química , Ácido Selenioso/química , Tiourea/química , Ácido Ascórbico/análisis , Minería , Oxidación-Reducción , Ácido Selénico/análisis , Ácido Selenioso/análisis , Selenio/análisis , Compuestos de Selenio , Azufre , Tiourea/análisis
3.
Sci Rep ; 7(1): 12254, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947748

RESUMEN

Although antimicrobial peptides (AMPs) have been used as feed additives, only a few studies have examined their use in ruminants. In this study, we evaluated the use of AMPs(recombinant swine defensin and a fly antibacterial peptide were mixed by 1:1) as a medicated feed additive for juvenile goats. Dietary treatments included control groups (group I: 300 g concentrate; group III: 600 g concentrate), and AMP-supplemented groups (group II: 300 g concentrate + 3.0 g AMPs; group IV: 600 g concentrate + 3.0 g AMPs). AMP-treated groups exhibited an increase in bacterial genera, including Fibrobacter, Anaerovibrio, and Succiniclasticum, and the ciliate genus Ophryoscolex; as well a reduction in bacterial genera, such as Selenomonas, Succinivibrio, and Treponema, and the ciliate genera Polyplastron, Entodinium, and Isotricha. The changes in Fibrobacter, Anaerovibrio, Ophryoscolex, Polyplastron, Entodinium, and Isotricha were related to the concentrate. AMP treatment led to increased body weight, average daily weight gain, enzymatic activity (pectinase, xylanase, and lipase), especially in the normal concentrate group, and influence on ruminal fermentation function. In addition, goats treated with AMPs had higher rumen microorganism diversity indices than the control groups. Our results demonstrate that AMPs can be utilized as feed additives for juvenile goats.


Asunto(s)
Alimentación Animal , Antiinfecciosos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Suplementos Dietéticos , Enfermedades de las Cabras/prevención & control , Cabras , Animales , Peso Corporal , Microbioma Gastrointestinal/efectos de los fármacos , Rumen/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA