Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 42(7): 1378-1388, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29795461

RESUMEN

BACKGROUND/OBJECTIVE: N6-methyladenosine (m6A) modification of mRNA plays a role in regulating adipogenesis. However, its underlying mechanism remains largely unknown. Epigallocatechin gallate (EGCG), the most abundant catechin in green tea, plays a critical role in anti-obesity and anti-adipogenesis. METHODS: High-performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HPLC-QqQ-MS/MS) was performed to determine the m6A levels in 3T3-L1 preadipocytes. The effects of EGCG on the m6A levels in specific genes were determined by methylated RNA immunoprecipitation coupled with quantitative real-time PCR (meRIP-qPCR). Several adipogenesis makers and cell cycle genes were analyzed by quantitative real-time PCR (qPCR) and western blotting. Lipid accumulation was evaluated by oil red O staining. All measurements were performed at least for three times. RESULTS: Here we showed that EGCG inhibited adipogenesis by blocking the mitotic clonal expansion (MCE) at the early stage of adipocyte differentiation. Exposing 3T3-L1 cells to EGCG reduced the expression of fat mass and obesity-associated (FTO) protein, an m6A demethylase, which led to increased overall levels of RNA m6A methylation. Cyclin A2 (CCNA2) and cyclin dependent kinase 2 (CDK2) play vital roles in MCE. The m6A levels of CCNA2 and CDK2 mRNA were dramatically enhanced by EGCG. Interestingly, EGCG increased the expression of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which recognized and decayed methylated mRNAs, resulting in decreased protein levels of CCNA2 and CDK2. As a result, MCE was blocked and adipogenesis was inhibited. FTO overexpression and YTHDF2 knockdown in 3T3-L1 cells significantly increased CCNA2 and CDK2 protein levels and ameliorated the EGCG-induced adipogenesis inhibition. Thus, m6A-dependent CCNA2 and CDK2 expressions mediated by FTO and YTHDF2 contributed to EGCG-induced adipogenesis inhibition. CONCLUSION: Our findings provide mechanistic insights into how m6A is involved in the EGCG regulation of adipogenesis and shed light on its anti-obesity effect.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Fármacos Antiobesidad/farmacología , Catequina/análogos & derivados , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Células 3T3-L1/citología , Adipocitos/citología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/deficiencia , Animales , Catequina/farmacología , Modelos Animales de Enfermedad , Ratones , ARN Mensajero/química , ARN Mensajero/genética , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA