Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562339

RESUMEN

Preterm birth is associated with a high risk of morbidity and mortality including brain damage and cerebral palsy. The development of brain injury in the preterm infant may be influenced by many factors including perinatal asphyxia, infection/inflammation, chronic hypoxia and exposure to treatments such as mechanical ventilation and corticosteroids. There are currently very limited treatment options available. In clinical trials, magnesium sulfate has been associated with a small, significant reduction in the risk of cerebral palsy and gross motor dysfunction in early childhood but no effect on the combined outcome of death or disability, and longer-term follow up to date has not shown improved neurological outcomes in school-age children. Recombinant erythropoietin has shown neuroprotective potential in preclinical studies but two large randomized trials, in extremely preterm infants, of treatment started within 24 or 48 h of birth showed no effect on the risk of severe neurodevelopmental impairment or death at 2 years of age. Preclinical studies have highlighted a number of promising neuroprotective treatments, such as therapeutic hypothermia, melatonin, human amnion epithelial cells, umbilical cord blood and vitamin D supplementation, which may be useful at reducing brain damage in preterm infants. Moreover, refinements of clinical care of preterm infants have the potential to influence later neurological outcomes, including the administration of antenatal and postnatal corticosteroids and more accurate identification and targeted treatment of seizures.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/prevención & control , Enfermedades del Prematuro/prevención & control , Humanos , Recién Nacido , Recien Nacido Prematuro
2.
Behav Brain Res ; 275: 225-33, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25200515

RESUMEN

Many factors influence neurodevelopment. However, their contribution to adult neural function is often unclear. This is often due to complex expression profiles, cell signalling, neuroanatomy, and a lack of effective tests to assess the function of neural circuits in vivo. Ephrin-A2 and ephrin-A5 are cell surface proteins implicated in multiple aspects of neurodevelopment. While the role of ephrin-As in visual, auditory and learning behaviours has been explored, little is known about their role in dopaminergic and neuromotor pathways, despite expression in associated brain regions. Here we probe the function of ephrin-A2 and ephrin-A5 in the development of the dopaminergic and neuromotor pathways using counts of tyrosine hydroxylase (TH) positive cells in the substantia nigra pars compacta (SNpc) and the ventral tegmental area (VTA), the acoustic startle reflex (ASR), and a measure of sensorimotor gating, prepulse inhibition (PPI). Analysis of the ASR and PPI in ephrin-A2 and/or ephrin-A5 knock-out mice revealed that both genes play distinct roles in mediating ASR circuits, but are unlikely to play a role in PPI. Knock-out of either gene resulted in robust changes in startle response magnitude and measures of startle onset and peak latencies. However, ephrin-A2 and ephrin-A5 regulate aspects of the ASR differently: ephrin-A2 KO mice have increased startle amplitude, increased sensitivity and reduced latency to startle, whilst ephrin-A5 KO mice show opposite effects. Neither of the gene knock outs affected PPI, despite ephrin-A5 KO mice showing changes in dopamine cell numbers in nuclei thought to regulate PPI. We propose that majority of the changes observed ephrin-A2 and ephrin-A5 KO mice appear to be mediated by the effects on motor neurons and their muscle targets, rather than changes in auditory sensitivity.


Asunto(s)
Efrina-A2/deficiencia , Efrina-A5/deficiencia , Inhibición Neural/genética , Filtrado Sensorial/genética , Estimulación Acústica , Análisis de Varianza , Animales , Efrina-A2/genética , Efrina-A5/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Porción Compacta de la Sustancia Negra/metabolismo , Tiempo de Reacción/genética , Reflejo de Sobresalto/genética , Tirosina 3-Monooxigenasa/metabolismo , Área Tegmental Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA