RESUMEN
Marine fishes are generally unable to produce sufficient quantities of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) for their normal growth and survival, as the key fatty acid-metabolizing enzymes in the EPA and DHA biosynthetic pathway are limited. It is therefore necessary to supplement cultured marine fish species diets with fish oils in order to supply EPA and DHA. Given that freshwater fishes are capable of synthesizing both EPA and DHA, they presumably express all of the enzymes required for this biosynthetic pathway. Thus, we hypothesize that transgenic marine species carrying these fatty acid-metabolizing enzymes could be reared without the dietary supplementation of fish oil. As the first step toward this goal, we used marine fish, nibe croaker to produce a transgenic line carrying the elongase gene isolated from masu salmon. Fatty acid analysis revealed that the liver EPA (20:5n-3) content in the transgenic fish was lower (3.3% vs. 7.7%). However, docosapentaenoic acid (22:5n-3) content in the transgenic fish was 2.28-fold (4.1% vs. 1.8%) higher than in non-transgenic fish. Further, tetracosapentaenoic acid (24:5n-3) was specifically detected in the transgenic fish. We therefore conclude that the development of transgenic fish lines with these fatty acid-metabolizing enzymes could be a powerful tool for manipulating fatty acid metabolic pathways in fish.