Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1131830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415666

RESUMEN

Maternal obesity is the key predictor for childhood obesity and neurodevelopmental delay in the offspring. Medicinal plants are considered to be the safe and best option, and at the same time, probiotic consumption during pregnancy provides beneficial effects for both the mother and the child. Current research has shown that Elateriospermum tapos (E. tapos) yoghurt is safe to consume and consists of many bioactive compounds that can exert an anti-obesity effect. Thus, this study has been designed to study the role of E. tapos yoghurt in mitigating maternal obesity. In this study, a total of 48 female Sprague Dawley (SD) rats were assigned to six groups, with eight rats per group, and obesity was induced over 16 weeks with a high-fat diet (HFD) pellet. On the 17th week, the rats were allowed to mate and pregnancy was confirmed through vaginal smear. The obese induced group was further divided into negative and positive control groups, followed by E. tapos yoghurt treatment groups with three different concentrations (5, 50, and 500 mg/kg). The changes in body weight, calorie intake, lipid profile, liver profile, renal profile, and histopathological analysis were measured on postnatal day (PND) 21. The results show that the group with the highest concentration of E. tapos yoghurt (HYT500) supplementation shows gradual reduction in body weight and calorie intake on PND 21 and modulates the lipid level, liver, and renal enzymes to a normal level similar to the normal group. In histological analysis, HYT500 reverses the damage caused by HFD in liver and colon, and reverses the adipocytes' hypertrophy in retroperitoneal white adipose tissue and visceral fat. In conclusion, supplementation of E. tapos yoghurt during the gestational period up to weaning is effective in the gradual weight loss of maternal obese dams from the 500-mg/kg-supplemented group in this study.


Asunto(s)
Obesidad Materna , Obesidad Infantil , Niño , Humanos , Ratas , Embarazo , Femenino , Animales , Ratas Sprague-Dawley , Yogur , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Lípidos
2.
Front Pharmacol ; 14: 1132087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077809

RESUMEN

This study assessed the toxicity of lutein-rich purple sweet potato leaf (PSPL) extract in male Sprague-Dawley rats. Methods and study design: A total of 54 adult male Sprague-Dawley rats were used. For the acute toxicity study, three rats in the acute control group were fed 2,000 mg/kg of PSPL for 14 days. The subacute toxicity study included six rats each in four groups administered 50, 250, 500, or 1,000 mg/kg for 28 days and observed for further 14 days without treatment in the subacute control and subacute satellite groups. Changes in body weight; blood biochemistry; hematological parameters; relative organ weight; and histological sections of the heart, kidney, liver, pancreas, aorta, and retina were observed for signs of toxicity. Results: The gradual increase in weekly body weight, normal level full blood count, normal liver and kidney profile, relative organ weight, and histological sections of all stained organ tissue in the treated group compared with the acute, subacute, and satellite control groups demonstrated the absence of signs of toxicity. Conclusion: Lutein-rich PSPL extract shows no signs of toxicity up to 2,000 mg/kg/day.

3.
Nutrients ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904258

RESUMEN

Maternal obesity is a key predictor of childhood obesity and a determining factor for a child's body composition. Thus, any form of maternal nutrition during the gestational period plays a vital role in influencing the growth of the fetus. Elateriospermum tapos (E. tapos) yogurt has been found to comprise many bioactive compounds such as tannins, saponins, α-linolenic acid, and 5'-methoxy-bilobate with apocynoside I that could cross the placenta and exhibit an anti-obesity effect. As such, this study aimed to investigate the role of maternal E. tapos yogurt supplementation on offspring body composition. In this study, 48 female Sprague Dawley (SD) rats were induced with obesity using a high-fat diet (HFD) and were allowed to breed. Upon confirmation of pregnancy, treatment was initiated with E. tapos yogurt on the obese dams up to postnatal day 21. The weaning offspring were then designated into six groups according to their dam's group (n = 8) as follows; normal food and saline (NS), HFD and saline (HS), HFD and yogurt (HY), HFD and 5 mg/kg of E. tapos yogurt (HYT5), HFD and 50 mg/kg of E. tapos yogurt (HYT50), and HFD and 500 mg/kg of E. tapos yogurt (HYT500). The body weight of the offspring was accessed every 3 days up to PND 21. All the offspring were euthanized on PND 21 for tissue harvesting and blood sample collection. The results showed that both male and female offspring of obese dams treated with E. tapos yogurt showed growth patterns similar to NS and reduced levels of triglycerides (TG), cholesterol, LDL, non-HDL, and leptin. Liver enzymes such as ALT, ALP, AST, GGT, and globulin, and renal markers such as sodium, potassium, chloride, urea, and creatinine levels significantly reduced (p < 0.05) in the offspring of E. tapos yogurt-treated obese dams with the normal histological architecture of the liver, kidney, colon, RpWAT, and visceral tissue that is comparable to NS. In toto, E. tapos yogurt supplementation of obese dams exerted an anti-obesity effect by preventing intergenerational obesity by reversing HFD-induced damage in the fat tissue of the offspring.


Asunto(s)
Fenómenos Fisiologicos Nutricionales Maternos , Obesidad Infantil , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Masculino , Embarazo , Ratas , Composición Corporal , Dieta Alta en Grasa , Suplementos Dietéticos , Ratas Sprague-Dawley , Yogur
4.
Toxins (Basel) ; 15(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36828439

RESUMEN

The Bouea macrophylla fruit is native to Malaysia and is known for its many beneficial effects on one's health. Probiotics are well-known for their roles as anti-inflammatory, antioxidant, and anti-tumour properties due to their widespread use. As a result, the purpose of this study was to incorporate the ethanolic extract of Bouea macrophylla into yoghurt and then assess the rodents for any toxicological effects. According to the findings of the nutritional analysis, each 100 mL serving of the newly formulated yoghurt contains 3.29 g of fat, 5.79 g of carbohydrates, 2.92 g of total protein, and 2.72 g of sugar. The ability of the newly developed yoghurt to stimulate the growth of Lactobacilli was demonstrated by the fact that the peak intensity of Lactobacillus species was measured at 1.2 × 106 CFU/g while the titratable acidity of the lactic acid was measured at 0.599 CFU/g. In order to carry out the toxicological evaluation, forty-eight male Sprague Dawley (SD) rats were utilized. Oral administration of single doses of 2000 mg/kg over the course of 14 days was used for the study of acute toxicity. Subacute toxicity was studied by giving animals Bouea macrophylla yoghurt (BMY) at repeated doses of 50, 250, 500, and 1000 mg/kg/day over a period of 28 days, while the control group was given normal saline. The results of the acute toxicity test revealed that rats treated with increasing doses up to a maximum of 2000 mg/kg exhibited no signs of toxicity. After an additional 14 days without treatment, acute toxicity of a single dose (2000 mg/kg) of BMY did not show any treatment-related toxicity in any of the rats that were observed. According to the data from the subacute toxicity study, there were no differences between the treated groups and the control groups in terms of food and water intake, body weight, plasma biochemistry (AST, ALT, ALP, and creatinine), haematological products, or organ weights. The architecture of the liver, heart, and kidney were all found to be normal upon histological examination. This indicates that oral consumption of BMY did not result in any negative effects being manifested in the rodents.


Asunto(s)
Extractos Vegetales , Yogur , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Fitoquímicos
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835384

RESUMEN

Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFß1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFß receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 µg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFß1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFß receptor component) in comparison to oleuropein. TGFß1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.


Asunto(s)
Células Epiteliales Alveolares , Suplementos Dietéticos , Transición Epitelial-Mesenquimal , Alcohol Feniletílico , Proteínas Proto-Oncogénicas c-akt , Humanos , Cadherinas/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Alcohol Feniletílico/farmacología , Células Epiteliales Alveolares/efectos de los fármacos
6.
Int J Mol Sci ; 23(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35682652

RESUMEN

Andrographis paniculata is a local medicinal plant that is widely cultivated in Malaysia. It is comprised of numerous bioactive compounds that can be isolated using water, ethanol or methanol. Among these compounds, andrographolide has been found to be the major compound and it exhibits varieties of pharmacological activities, including anti-cancer properties, particularly in the lipid-dependent cancer pathway. Lipids act as crucial membrane-building elements, fuel for energy-demanding activities, signaling molecules, and regulators of several cellular functions. Studies have shown that alterations in lipid composition assist cancer cells in changing microenvironments. Thus, compounds that target the lipid pathway might serve as potential anti-cancer therapeutic agents. The purpose of this review is to provide an overview of the medicinal chemistry and pharmacology of A. paniculata and its active compounds in terms of anti-cancer activity, primary mechanism of action, and cellular targets, particularly in the lipid-dependent cancer pathway.


Asunto(s)
Andrographis , Diterpenos , Neoplasias , Plantas Medicinales , Andrographis/química , Andrographis paniculata , Diterpenos/química , Lípidos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Plantas Medicinales/química , Transducción de Señal
7.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639164

RESUMEN

Hyperglycemia is a condition with high glucose levels that may result in dyslipidemia. In severe cases, this alteration may lead to diabetic retinopathy. Numerous drugs have been approved by officials to treat these conditions, but usage of any synthetic drugs in the long term will result in unavoidable side effects such as kidney failure. Therefore, more emphasis is being placed on natural ingredients due to their bioavailability and absence of side effects. In regards to this claim, promising results have been witnessed in the usage of Ipomoea batatas (I. batatas) in treating the hyperglycemic and dyslipidemic condition. Thus, the aim of this paper is to conduct an overview of the reported effects of I. batatas focusing on in vitro and in vivo trials in reducing high glucose levels and regulating the dyslipidemic condition. A comprehensive literature search was performed using Scopus, Web of Science, Springer Nature, and PubMed databases to identify the potential articles on particular topics. The search query was accomplished based on the Boolean operators involving keywords such as (1) Beneficial effect OR healing OR intervention AND (2) sweet potato OR Ipomoea batatas OR traditional herb AND (3) blood glucose OR LDL OR lipid OR cholesterol OR dyslipidemia. Only articles published from 2011 onwards were selected for further analysis. This review includes the (1) method of intervention and the outcome (2) signaling mechanism involved (3) underlying mechanism of action, and the possible side effects observed based on the phytoconstiuents isolated. The comprehensive literature search retrieved a total of 2491 articles using the appropriate keywords. However, on the basis of the inclusion and exclusion criteria, only 23 articles were chosen for further review. The results from these articles indicate that I. batatas has proven to be effective in treating the hyperglycemic condition and is able to regulate dyslipidemia. Therefore, this systematic review summarizes the signaling mechanism, mechanism of action, and phytoconstituents responsible for those activities of I. batatas in treating hyperglycemic based on the in vitro and in vivo study.


Asunto(s)
Retinopatía Diabética/prevención & control , Dislipidemias/tratamiento farmacológico , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Ipomoea batatas/química , Extractos Vegetales/uso terapéutico , Animales , Retinopatía Diabética/etiología , Dislipidemias/complicaciones , Humanos , Hiperglucemia/complicaciones
8.
Artículo en Inglés | MEDLINE | ID: mdl-32575426

RESUMEN

Recent advances in phytomedicine have explored some potential candidates for nerve regeneration, including hydroxytyrosol (HT). This study was undertaken to explore the potential effects of HT on human Schwann cells' proliferation. Methods: The primary human Schwann cell (hSC) was characterized, and the proliferation rate of hSC supplemented with various concentrations of HT was determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis and protein expression of glial fibrillary acidic protein (GFAP) and p75 nerve growth factor receptor (p75 NGFR) were evaluated via the immunofluorescence technique. Results: In vitro culture of hSCs revealed spindle-like, bipolar morphology with the expression of specific markers of hSC. Hydroxytyrosol at 10 and 20 ng/mL significantly increased the proliferation of hSCs by 30.12 ± 5.9% and 47.8 ± 6.7% compared to control (p < 0.05). Cell cycle analysis showed that HT-treated hSCs have a higher proliferation index (16.2 ± 0.2%) than the control (12.4 ± 0.4%) (p < 0.01). In addition, HT significantly increased the protein expression of GFAP and p75NGFR (p < 0.05). Conclusion: HT stimulates the proliferation of hSCs in vitro, indicated by a significant increase in the hSC proliferation index and protein expression of hSCs' proliferation markers, namely p75 NGFR and GFAP.


Asunto(s)
Antioxidantes , Proliferación Celular , Regeneración Nerviosa , Alcohol Feniletílico/análogos & derivados , Células de Schwann , Antioxidantes/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Regeneración Nerviosa/efectos de los fármacos , Alcohol Feniletílico/farmacología , Células de Schwann/efectos de los fármacos
9.
BMC Complement Altern Med ; 19(1): 290, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666058

RESUMEN

BACKGROUND: Nigella sativa or commonly known as black seed or black cumin is one of the most ubiquitous complementary medicine. Epithelial to mesenchymal transition (EMT) of type 2 is defined by the balance between wound healing and tissue fibrosis, which is dependent to the state of inflammation. This systematic review is conducted to provide an overview regarding the reported effect of Nigella sativa and its bioactive compound on the type 2 EMT. METHODS: A search was done in EBSCOHOST, OVID and SCOPUS database to obtain potentially relevant articles that were published between 1823 and August 2019. This review includes studies that focus on the effect of Nigella sativa and its bioactive compound on the events related to type 2 EMT. RESULTS: A total of 1393 research articles were found to be potentially related to the effect of Nigella sativa and its bioactive compound, thymoquinone on Type 2 EMT. After screening was done, 22 research articles met inclusion criteria and were included in this review. Majority of the studies, reported better wound healing rate or significant prevention of tissue inflammation and organ fibrosis following Nigella sativa or thymoquinone treatments. In terms of wound healing, studies included reported progression of EMT related pathological changes after treatment with Nigella sativa or thymoquinone. Alternatively, in terms of fibrosis and inflammation, studies included reported reversal of pathological changes related to EMT after treatment with Nigella sativa or thymoquinone. CONCLUSION: Through this review, Nigella sativa and thymoquinone have been associated with events in Type 2 EMT. They have been shown to promote wound healing, attenuate tissue inflammation, and prevent organ fibrosis via regulation of the EMT process.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Nigella sativa/química , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Heridas y Lesiones/tratamiento farmacológico , Animales , Benzoquinonas/análisis , Benzoquinonas/uso terapéutico , Humanos , Fitoterapia , Resultado del Tratamiento , Heridas y Lesiones/fisiopatología
10.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315241

RESUMEN

Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue. Prolonged inflammation causes long-term EMT activation that can lead to tissue fibrosis or cancer. Due to activation of EMT by its signaling pathway, therapeutic approaches that modulate that pathway should be explored. Olea europaea (OE) is well-known for its anti-inflammatory effects and abundant beneficial active compounds. These properties are presumed to modulate EMT events. This article reviews recent evidence of the effects of OE and its active compounds on EMT events and EMT-related diseases. Following evidence from the literature, it was shown that OE could modulate TGFß/SMAD, AKT, ERK, and Wnt/ß-catenin pathways in EMT due to a potent active compound that is present therein.


Asunto(s)
Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Animales , Humanos , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos
11.
BMC Complement Altern Med ; 18(1): 197, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940929

RESUMEN

BACKGROUND: One of the molecular mechanisms involved in upper airway-related diseases is epithelial-to-mesenchymal transition (EMT). Olea europaea (OE) has anti-inflammatory properties and thus, great potential to prevent EMT. This study aimed to investigate the effect of OE on EMT in primary nasal human respiratory epithelial cells (RECs). METHODS: Respiratory epithelial cells were isolated and divided into four groups: control (untreated), treated with 0.05% OE (OE group), EMT induced with 5 ng/ml of transforming growth factor beta-1 (TGFß1 group) and treated with 5 ng/ml TGFß1 + 0.05% OE (TGFß1 + OE group). The effects of OE treatment on growth kinetics, morphology and protein expression in RECs were evaluated. Immunocytochemistry analysis was performed to quantitate the total percentage of E-cadherin and vimentin expression from day 1 to day 3. RESULTS: There were no significant differences between untreated RECs and OE-treated RECs in terms of their morphology, growth kinetics and protein expression. Induction with TGFß1 caused RECs to have an elongated spindle shape, a slower proliferation rate, a higher expression of vimentin and a lower expression of E-cadherin compared with the control. Cells in the TGFß1 + OE group had similar epithelial shape to untreated group however it had no significant differences in their proliferation rate when compared to TGFß1-induced RECs. Cells treated with TGFß1 + OE showed significantly reduced expression of vimentin and increased expression of E-cadherin compared with the TGFß1 group (P < 0.05). CONCLUSION: The ability of OE to inhibit EMT in RECs was shown by TGFb1-induced EMT REC morphology, growth kinetics and protein expression markers (E-cadherin and vimentin) upon treatment with OE and TGFß1. Therefore, this study could provide insight into the therapeutic potential of OE to inhibit pathological tissue remodelling and persistent inflammation.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Células Cultivadas , Células Epiteliales/citología , Humanos , Mucosa Nasal/citología , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA