Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Mater ; 19(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38387046

RESUMEN

Transcatheter arterial embolization plays a pivotal role in treating various diseases. However, the efficacy of embolization therapy in cancer treatment can be limited by several factors, such as inevitable incomplete or non-target embolization, and the tumor recurrence and metastasis caused by the hypoxic microenvironment. Moreover, it is essential to explore simpler, more economical, and efficient methods for microsphere synthesis. Herein, we achieved one-step photocatalytic synthesis of lipiodol-doped Fe3O4@Poly (diallyliso-phthalate) multifunctional microspheres (IFeD MS) for arterial embolization, chemotherapy, and imaging. The prepared microspheres are in the shape of dried plums, with a particle size of 100-300 µm. Lipiodol demonstrates a certain degree of chemotherapeutic activity, and the incorporation of Fe3O4enables the microspheres to exhibit magnetothermal response and magnetic resonance imaging capabilities. Furthermore, the radiopaque characteristics of both agents provide the microspheres with promising potential for computed tomography and digital radiography imaging. The renal embolization experiment in rabbits demonstrated that IFeD MS achieved significant embolization and chemotherapeutic effects. Biocompatibility experiments revealed that this embolic agent did not induce tissue damage or inflammation beyond the treatment area. Additionally, IFeD MS exhibited promising imaging potential. The results of this study imply that the developed multifunctional embolic agent IFeD MS may have significant potential in transforming tumors previously only suitable for palliative cares into resectable radical treatments.


Asunto(s)
Embolización Terapéutica , Aceite Etiodizado , Ácidos Ftálicos , Animales , Conejos , Microesferas , Embolización Terapéutica/métodos , Riñón
2.
Drug Deliv Transl Res ; 13(10): 2664-2676, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37130996

RESUMEN

Magnetic hyperthermia therapy has been widely used in the nonsurgical treatment of patients with advanced stage cancers that cannot be treated by surgery. It is minimally invasive, precise, and highly efficient and has a good curative effect. In this paper, a magnetic microsphere with Fe3O4 was prepared for thermal therapy and imaging based on a photoinitiated suspension polymerization method from biallelic monomers. The preparation method clearly minimized the degradative chain transfer of allyl polymerization reactions. The microspheres were characterized by microscope observation, spectral analysis, thermal analysis, and magnetic testing. The magnetothermal effect was detected by an infrared thermal imager in vitro and in vivo under a high-frequency alternating magnetic field (AMF). The antitumor effect was verified by testing the viability of H22 cells and observing a tumor-bearing mouse model under high-frequency AMF. Biocompatibility was evaluated by cell viability assay, tissue section observation, and blood biochemical analysis. The imaging capacity was tested by X-ray, MRI, and CT imaging experiments. The results show that the product has good dispersibility, thermal stability, superparamagnetism, and biocompatibility. Under the action of an AMF, the magnetic hyperthermia effect in tumor-bearing mice was better, and an antitumor effect could be achieved.


Asunto(s)
Hipertermia Inducida , Ratones , Animales , Microesferas , Hipertermia Inducida/métodos , Campos Magnéticos , Imagen por Resonancia Magnética , Línea Celular Tumoral
3.
Sci Rep ; 7(1): 15250, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127318

RESUMEN

Hemostasis in vivo is a key to success in minimally invasive surgery (MIS). However, solid hemostatic materials cannot pass through the sheath tube of the MIS apparatus, while liquid ones are restricted by their low adhesion, which leads to them peeling off of tissue. To tackle the dilemma of fluidity and adhesion, a formulation containing a multifunctional sucrose allyl ether (SAE) monomer and an alpha-hydroxyketone liquid photoinitiator (HMPP) was applied as a lead hemostatic material for MIS. Real-time infrared results showed that SAE initiated by HMPP can rapidly polymerize into a transparent crosslinking membrane. Quantum chemistry showed that this occurs via a free radical addition reaction mechanism. Thermodynamic properties, such as reaction driving force and enthalpy change, were similar to those for a corresponding small molecular analogue, allyl methyl ether (AME), but the addition rate was lower than that for AME. The CC50 values of SAE and HMPP were also obtained by cell experiments. A hemostasis experiment in vivo was performed by comparing the formulation with chitosan and a traditional Chinese medicine (Yunnan Baiyao powder). The result showed that the formulation had a competitive advantage for use in MIS.


Asunto(s)
Hemostáticos , Procesos Fotoquímicos , Polimerizacion , Animales , Línea Celular , Hemostáticos/química , Hemostáticos/farmacocinética , Hemostáticos/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA