Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003494

RESUMEN

Garcinia cambogia extract (GCE) is a popular weight-loss supplement that also lowers plasma triglyceride (TG) levels. We hypothesized that GCE-mediated inhibition of ATP citrate lyase and thereby hepatic TG production could lead to compensatory mechanisms, including increased hepatic TG uptake via lipoprotein receptors. GCE (20 mg/day) administered 40 days orally to female C57BL/6Rj mice on a standard chow diet led to a decrease in both plasma fasting and post-prandial TG-rich lipoprotein levels, but with no significant change in body weight gain. Lipolysis stimulated lipoprotein receptor (LSR) protein levels, but not those of LDL-receptor, were increased as compared to controls. Mouse Hepa1-6 cells treated with the GCE active ingredient, hydroxycitrate, also led to increased LSR protein levels. Hepatic total cholesterol, TG, and muscle TG contents were higher in GCE-treated animals as compared to controls, whereas adipose TG levels were unchanged. LSR and LDL-receptor protein levels were correlated with liver total cholesterol, but only LDL-receptor was associated with liver TG. These results show that GCE treatment in mice on a standard chow diet led to significantly increased liver and muscle lipids, with no significant change in adipose tissue TG levels, which should be considered in the long-term use of GCE.


Asunto(s)
Garcinia cambogia , Lipólisis , Ratones , Femenino , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos , Triglicéridos/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , Dieta , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769291

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) play an important role in the development, maintenance, and function of the brain. Dietary supplementation of n-3 PUFAs in neurological diseases has been a subject of particular interest in preventing cognitive deficits, and particularly in age-related neurodegeneration. Developing strategies for the efficient delivery of these lipids to the brain has presented a challenge in recent years. We recently reported the preparation of n-3 PUFA-rich nanoliposomes (NLs) from salmon lecithin, and demonstrated their neurotrophic effects in rat embryo cortical neurons. The objective of this study was to assess the ability of these NLs to deliver PUFAs in cellulo and in vivo (in mice). NLs were prepared using salmon lecithin rich in n-3 PUFAs (29.13%), and characterized with an average size of 107.90 ± 0.35 nm, a polydispersity index of 0.25 ± 0.01, and a negative particle-surface electrical charge (-50.4 ± 0.2 mV). Incubation of rat embryo cortical neurons with NLs led to a significant increase in docosahexaenoic acid (DHA) (51.5%, p < 0.01), as well as palmitic acid, and a small decrease in oleic acid after 72 h (12.2%, p < 0.05). Twenty mice on a standard diet received oral administration of NLs (12 mg/mouse/day; 5 days per week) for 8 weeks. Fatty acid profiles obtained via gas chromatography revealed significant increases in cortical levels of saturated, monounsaturated, and n-3 (docosahexaenoic acid,) and n-6 (docosapentaenoic acid and arachidonic acid) PUFAs. This was not the case for the hippocampus or in the liver. There were no effects on plasma lipid levels, and daily monitoring confirmed NL biocompatibility. These results demonstrate that NLs can be used for delivery of PUFAs to the brain. This study opens new research possibilities in the development of preventive as well as therapeutic strategies for age-related neurodegeneration.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Insaturados/sangre , Lecitinas/administración & dosificación , Neuronas/citología , Salmón/metabolismo , Administración Oral , Animales , Disponibilidad Biológica , Células Cultivadas , Cromatografía de Gases , Ácidos Docosahexaenoicos/análisis , Ácidos Grasos Omega-3/farmacocinética , Femenino , Hipocampo/química , Lecitinas/farmacocinética , Liposomas , Hígado/química , Masculino , Ratones , Nanoestructuras , Neuronas/química , Ácido Oléico/análisis , Ácido Palmítico/análisis , Tamaño de la Partícula , Cultivo Primario de Células , Ratas
3.
Mar Drugs ; 17(7)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323972

RESUMEN

Lipids play multiple roles in preserving neuronal function and synaptic plasticity, and polyunsaturated fatty acids (PUFAs) have been of particular interest in optimizing synaptic membrane organization and function. We developed a green-based methodology to prepare nanoliposomes (NL) from lecithin that was extracted from fish head by-products. These NL range between 100-120 nm in diameter, with an n-3/n-6 fatty acid ratio of 8.88. The high content of n-3 PUFA (46.3% of total fatty acid content) and docosahexanoic acid (26%) in these NL represented a means for enrichment of neuronal membranes that are potentially beneficial for neuronal growth and synaptogenesis. To test this, the primary cultures of rat embryo cortical neurons were incubated with NL on day 3 post-culture for 24 h, followed by immunoblots or immunofluorescence to evaluate the NL effects on synaptogenesis, axonal growth, and dendrite formation. The results revealed that NL-treated cells displayed a level of neurite outgrowth and arborization on day 4 that was similar to those of untreated cells on day 5 and 6, suggesting accelerated synapse formation and neuronal development in the presence of NL. We propose that fish-derived NL, by virtue of their n-3 PUFA profile and neurotrophic effects, represent a new innovative bioactive vector for developing preventive or curative treatments for neurodegenerative diseases.


Asunto(s)
Ácidos Grasos Omega-3/administración & dosificación , Lecitinas/administración & dosificación , Neuronas/efectos de los fármacos , Salmón , Sinapsis/efectos de los fármacos , Animales , Células Cultivadas , Corteza Cerebral/citología , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Embrión de Mamíferos , Tecnología Química Verde/métodos , Liposomas , Nanopartículas/química , Plasticidad Neuronal/efectos de los fármacos , Cultivo Primario de Células , Ratas
4.
Neurobiol Aging ; 54: 84-93, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28347928

RESUMEN

Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Encéfalo/citología , Membrana Celular/fisiología , Neuronas/citología , Nootrópicos/uso terapéutico , Animales , Factor Neurotrófico Ciliar/fisiología , Grasas Insaturadas en la Dieta , Ácidos Docosahexaenoicos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Microdominios de Membrana , Ratones Endogámicos C57BL , Receptor de Factor Neurotrófico Ciliar/fisiología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
5.
Biochimie ; 130: 178-187, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27594339

RESUMEN

Lipids are the fundamental structural components of biological membranes. For a long time considered as simple barriers segregating aqueous compartments, membranes are now viewed as dynamic interfaces providing a molecular environment favorable to the activity of membrane-associated proteins. Interestingly, variations in membrane lipid composition, whether quantitative or qualitative, play a crucial role in regulation of membrane protein functionalities. Indeed, a variety of alterations in brain lipid composition have been associated with the processes of normal and pathological aging. Although not establishing a direct cause-and-effect relationship between these complex modifications in cerebral membranes and the process of cognitive decline, evidence shows that alterations in membrane lipid composition affect important physicochemical properties notably impacting the lateral organization of membranes, and thus microdomains. It has been suggested that preservation of microdomain functionality may represent an effective strategy for preventing or decelerating neuronal dysfunction and cerebral vulnerability, processes that are both aggravated by aging. The working hypothesis developed in this review proposes that preservation of membrane organization, for example, through nutritional supplementation of docosahexaenoic acid, could prevent disturbances in and preserve effective cerebral function.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Encéfalo/efectos de los fármacos , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Modelos Biológicos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA