Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chromatogr A ; 1719: 464732, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38387153

RESUMEN

The extraction methods for traditional Chinese medicine (TCM) may have varying therapeutic effects on diseases. Currently, Pueraria lobata (PL) is mostly extracted with ethanol, but decoction, as a TCM extraction method, is not widely adopted. In this study, we present a strategy that integrates targeted metabolomics, 16 s rDNA sequencing technology and metagenomics for exploring the potential mechanism of the water extract of PL (PLE) in treating myocardial infarction (MI). Using advanced analytical techniques like ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), we comprehensively characterized PLE's chemical composition. Further, we tested its efficacy in a rat model of MI induced by ligation of the left anterior descending branch of the coronary artery (LAD). We assessed cardiac enzyme levels and conducted echocardiograms. UPLC-MS/MS was used to compare amino acid differences in serum. Furthermore, we investigated fecal samples using 16S rDNA sequencing and metagenomic sequencing to study intestinal flora diversity and function. This study demonstrated PLE's effectiveness in reducing cardiac injury in LAD-ligated rats. Amino acid metabolomics revealed significant improvements in serum levels of arginine, citrulline, proline, ornithine, creatine, creatinine, and sarcosine in MI rats, which are key compounds in the arginine metabolism pathway. Enzyme-linked immunosorbent assay (ELISA) results showed that PLE significantly improved arginase (Arg), nitric oxide synthase (NOS), and creatine kinase (CK) contents in the liver tissue of MI rats. 16 s rDNA and metagenome sequencing revealed that PLE significantly improved intestinal flora imbalance in MI rats, particularly in taxa such as Tuzzerella, Desulfovibrio, Fournierella, Oscillibater, Harryflintia, and Holdemania. PLE also improved the arginine metabolic pathway in the intestinal microorganisms of MI rats. The findings indicate that PLE effectively modulates MI-induced arginine levels and restores intestinal flora balance. This study, the first to explore the mechanism of action of PLE in MI treatment considering amino acid metabolism and intestinal flora, expands our understanding of the potential of PL in MI treatment. It offers fresh insights into the mechanisms of PL, guiding further research and development of PL-based medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Infarto del Miocardio , Pueraria , Ratas , Animales , Arginina , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolómica/métodos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Aminoácidos , ADN Ribosómico
2.
J Pharm Biomed Anal ; 239: 115846, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38039873

RESUMEN

BACKGROUND: Shouhui Tongbian capsule (SHTB) has been widely used for the treatment of constipation. There are few studies on SHTB at present. The current study aimed to explore the effects of multi-components compatibility of SHTB for efficacy enhancement and toxicity reduction and evaluate its molecular biological mechanisms in the treatment of slow transit constipation (STC). METHODS: Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to quantify 17 anthraquinone components in different compatible systems of SHTB. Network pharmacological analysis was used to probe the potential mechanisms of SHTB in treating STC. In addition, an animal experiment combined with western blot analysis was performed to further validate the predicted results. RESULTS: After compatibility, the dissolution of 13 components with good effects in treating constipation increased, while the dissolution of 3 components with hepatotoxicity decreased. Overall, 145 common targets of 13 synergistic components and constipation were identified. A synergistic component-target-disease network showed that chrysoobtusin, obtusifolin, emodin, obtusin and 2-hydroxyl emodin-1-methyl ether were the potential key synergistic components. A protein-protein interaction network analysis identified 91 targets, and an analysis of topological characteristics was conducted to confirm the core targets. Gene Ontology function revealed that the 13 synergistic components for the treatment of STC mainly played roles via protein phosphorylation, positive regulation of phosphorylation, phosphotransferase activity, kinase activity and protein kinase activity, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that these components were enriched in pathways in cancer, MAPK signaling pathway, IL-17 signaling pathway, NF-κB signaling pathway, etc. The results of animal experimental validation showed that SHTB significantly reduced the expression levels of p-p38 and p-ERK proteins in the colon tissue of the STC rats. CONCLUSION: This study preliminarily demonstrated that efficacy enhancement and toxicity reduction of SHTB could be achieved after compatibility, which expounded the connotation of compatibility theory of traditional Chinese medicine from the perspective of chemical composition, reflecting the rationality and scientificity of compatibility theory. Meanwhile, the study also revealed the core targets and potential molecular biological mechanisms of SHTB in the treatment of STC, which may serve as a reference for subsequent studies and clinical applications of SHTB.


Asunto(s)
Medicamentos Herbarios Chinos , Emodina , Animales , Ratas , Farmacología en Red , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Estreñimiento/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Simulación del Acoplamiento Molecular
3.
J Pharm Biomed Anal ; 239: 115830, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096633

RESUMEN

BACKGROUND: Biyan Qingdu Granula (BYQD) is a traditional Chinese medicine (TCM) formula commonly used for post-radiotherapy treatment of nasopharyngeal carcinoma (NPC). Despite its extensive use, the underlying pharmacological mechanisms have yet to be fully elucidated. METHODS: UPLC/Q-TOF MS was used to comprehensively analyze the chemical composition of BYQD. Additionally, an everted gut sac model, coupled with UPLC/Q-TOF MS, was used to screen and identify the active ingredients. Subsequently, we conducted a network pharmacological analysis to delve into the potential mechanisms of these active ingredients. Molecular docking experiments were also performed to assess the interactions between active ingredients and potential core targets. RESULTS: The findings revealed the identification of 62 identical ingredients upon comparing the sample solution and intestinal absorbed solution of BYQD. We constructed a protein-protein interaction (PPI) network, which led to the identification of five core targets, namely, TP53, STAT3, MAPK1, SRC and AKT1. Through the construction of a drug-active ingredient-intersection target network, we identified Quercetin, Luteolin, Eupatilin, Magnoflorine, Acacetin and other compound as potential active ingredients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that pathways in cancer, PI3K-Akt signaling pathway, lipid and atherosclerosis, proteoglycans in cancer, and the MAPK signaling pathway might play the key roles in the treatment of NPC after radiotherapy using BYQD. Molecular docking results corroborated strong binding activity between the putative core targets and the corresponding key active ingredients. CONCLUSION: This study provides a preliminary revelation of the active ingredients and potential pharmacological mechanisms of BYQD in the post-radiotherapy treatment of NPC. These findings establish a vital theoretical basis and serve as a scientific reference for the future investigating the pharmacological mechanisms and clinical application of BYQD.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Nasofaríngeas , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Cromatografía Líquida de Alta Presión , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/radioterapia , Fosfatidilinositol 3-Quinasas , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Phytother Res ; 37(12): 5932-5946, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37697496

RESUMEN

BACKGROUND AND AIM: Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE: We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS: The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS: Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.


Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Pueraria , Ratas , Animales , Etanol , Cromatografía Liquida , Espectrometría de Masas en Tándem , Infarto del Miocardio/tratamiento farmacológico , Extractos Vegetales/farmacología , Ácidos y Sales Biliares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA