Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38668596

RESUMEN

A random-effects meta-analysis was conducted to investigate the effect of mycotoxins (MT) without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb®, Alltech, Inc., Nicholasville, KY, USA) on laying hen performance. A total of 25 trials were collected from a literature search, and data were extracted from 8 of these that met inclusion criteria, for a total of 12 treatments and 1774 birds. Laying hens fed MT had lower (p < 0.05) body weight (BW) by -50 g, egg production by -6.3 percentage points, and egg weight by -1.95 g than control fed hens (CTRL). Inclusion of YCWE during the mycotoxin challenges (YCWE + MT) resulted in numerically greater (p = 0.441) BW by 12.5 g, while egg production and egg weight were significantly (p < 0.0001) higher by 4.2 percentage points and 1.37 g, respectively. Furthermore, economic assessment calculations indicated that YCWE may not only support hen performance but also resulted in a positive return on investment. In conclusion, mycotoxins can play a role in negatively impacting laying hen performance and profitability. Inclusion of YCWE in feed with mycotoxin challenges provided benefits to egg production and egg weight and may support profitability. As such, the inclusion of YCWE could play an important role in minimizing mycotoxin effects and in turn aid farm efficiency and profitability.


Asunto(s)
Alimentación Animal , Pared Celular , Pollos , Micotoxinas , Animales , Micotoxinas/toxicidad , Pared Celular/efectos de los fármacos , Femenino , Levaduras , Reproducción/efectos de los fármacos , Suplementos Dietéticos
2.
Toxins (Basel) ; 15(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37888627

RESUMEN

Using a random-effects meta-analysis, the performance of growing pigs under a mycotoxin challenge (MT) with or without supplementation of yeast cell wall extract (YCWE, Mycosorb®, Alltech Inc.) was evaluated. Both MT and YCWE were also compared to animal controls not receiving mycotoxins (CTRL). Meta-regression was used to further explore the impacts of MT at/below (category 1) or above (category 2) global regulatory guidelines. Following the screening, 23 suitable references (30 mycotoxin treatments) were used. Overall, MT lowered average daily gain (ADG, p < 0.001) and average daily feed intake (ADFI, p < 0.0001) from CTRL by -84 and -165 g, respectively. Inclusion of YCWE during mycotoxin challenges (YCWE+MT, average 2.1 kg/ton) tended to result in greater ADG (+17 g, p = 0.068) compared to MT treatments. The gain-to-feed ratio (G:F) was not impacted by MT or YCWE+MT. Further investigation by meta-regression revealed that pigs fed MT in category 1 had lower ADG (-78.5 g, p < 0.001) versus CTRL, while YCWE+MT had higher ADG (+48 g, p < 0.001) over MT and was similar to CTRL. The ADFI was not impacted, although YCWE+MT had ADFI values similar to the CTRL. In category 2, ADG and ADFI of pigs fed MT were lower than CTRL (-85.1 and -166 g, respectively, p < 0.0001), with a tendency for YCWE+MT to result in higher ADFI (+25.3 g, p = 0.062). In summary, the inclusion of YCWE provided benefits to performance during common mycotoxin challenge levels (at or below regulatory guidelines).


Asunto(s)
Micotoxinas , Animales , Porcinos , Micotoxinas/toxicidad , Micotoxinas/análisis , Saccharomyces cerevisiae , Ingestión de Alimentos , Alimentación Animal/análisis , Pared Celular/química , Extractos Vegetales , Dieta
3.
Poult Sci ; 101(9): 102043, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35905550

RESUMEN

The effect of mycotoxins (MT) on broiler performance without or with the inclusion of yeast cell wall extract (YCWE, Mycosorb, Alltech, Inc., KY) was evaluated in a random-effects meta-analysis. Data was extracted from 25 research experiments with a total of 10,307 broilers. Broilers fed MT had lower (P < 0.001) body weight gain (BWG, -217 g), reduced feed intake (FI, -264 g), increased feed conversion ratio (FCR, 0.12), and greater mortality by 2.01%. Inclusion of YCWE improved (P < 0.001) BWG (59 g) and FI (65 g), lowered FCR (-0.05), and reduced mortality by 1.74%. Additionally, change in European Production Efficiency Factor (EPEF) was assessed. Feeding MT lowered (P < 0.001) EPEF while YCWE increased (P < 0.001) EPEF. Finally, the carbon footprint of production was evaluated. Control fed birds produced an estimated 1.93 kg CO2-equivalent/kg liveweight (LW), while MT fed broilers produced 2.13 kg CO2-equivalent/kg LW and YCWE inclusion lowered this to 2.03 kg CO2-equivalent/kg LW which resulted in -25 tonnes less CO2-equivalent output per 100,000 birds with YCWE. In conclusion, mycotoxins can play a role in reducing broiler performance and farm production output, as well as increase the carbon footprint. Inclusion of YCWE in feed under a mycotoxin challenge can improve broiler performance and output, as well as lower carbon footprint, which could play a role in farm efficiency, profitability, and environmental sustainability.


Asunto(s)
Micotoxinas , Alimentación Animal/análisis , Animales , Dióxido de Carbono/análisis , Pared Celular/química , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Extractos Vegetales , Saccharomyces cerevisiae
4.
Toxins (Basel) ; 14(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35622561

RESUMEN

Yeast cell wall-based preparations have shown efficacy against Aspergillus-based toxins but have lower impact against type-B trichothecenes. Presently, we investigated a combination of deoxynivalenol (DON), T-2 toxin (T2) and zearalenone (ZEA), and the effect of a yeast cell wall extract (YCWE) and a post-biotic yeast cell wall-based blend (PYCW) with the objectives of preventing mycotoxins' negative effects in commercial broilers. A total of 720 one-day-old male Cobb broilers were randomly allocated to: (1) control diet, (aflatoxins 6 µg/kg; cyclopiazonic acid 15 µg/kg; fusaric acid 25 µg/kg; fumonisin B1 310 µg/kg); (2) Diet1 + 0.2% YCWE; (3) Diet1 + 0.2% PYCW; (4) Contaminated diet (3.0 mg/kg DON; 2.17 mg/kg 3-acetyldeoxynivalenol; 104 g/kg T2; 79 g/kg ZEA); (5) Diet4 + 0.2% YCWE; and (6) Diet4 + 0.2% PYCW. Naturally contaminated diets adversely affected performance, serum biochemistry, liver function, immune response, altered cecal SCFA goblet cell count and architecture of intestinal villi. These adverse effects were reduced in birds fed PYCW and to a lesser extent YCWE, indicating protection against toxic assault. PYCW yielded better production performance and stimulated liver function, with higher response to NDV and IBV vaccination. Furthermore, mycotoxins were found to affect production outputs when evaluated with the European poultry production efficiency factor compared to control or YCWE and PYCW supplemented treatments. Taken together, YCWE, when complemented with nutritional add-ons (PYCW), could potentiate the remediation of the negative effects from a multi mycotoxins dietary challenge in broiler birds.


Asunto(s)
Micotoxinas , Zearalenona , Animales , Pared Celular , Pollos , Masculino , Micotoxinas/toxicidad , Extractos Vegetales , Saccharomyces cerevisiae
5.
Toxins (Basel) ; 13(3)2021 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805637

RESUMEN

Mycotoxins are naturally occurring toxins that can affect livestock health and performance upon consumption of contaminated feedstuffs. To mitigate the negative effects of mycotoxins, sequestering agents, adsorbents, or binders can be included to feed to interact with toxins, aiding their passage through the gastrointestinal tract (GI) and reducing their bioavailability. The parietal cell wall components of Saccharomyces cerevisiae have been found to interact in vitro with mycotoxins, such as, but not limited to, aflatoxin B1 (AFB1), and to improve animal performance when added to contaminated diets in vivo. The present study aimed to examine the pharmacokinetics of the absorption of radiolabeled AFB1 in rats in the presence of a yeast cell wall-based adsorbent (YCW) compared with that in the presence of the clay-based binder hydrated sodium calcium aluminosilicate (HSCAS). The results of the initial pharmacokinetic analysis showed that the absorption process across the GI tract was relatively slow, occurring over a matter of hours rather than minutes. The inclusion of mycotoxin binders increased the recovery of radiolabeled AFB1 in the small intestine, cecum, and colon at 5 and 10 h, revealing that they prevented AFB1 absorption compared with a control diet. Additionally, the accumulation of radiolabeled AFB1 was more significant in the blood plasma, kidney, and liver of animals fed the control diet, again showing the ability of the binders to reduce the assimilation of AFB1 into the body. The results showed the potential of YCW in reducing the absorption of AFB1 in vivo, and in protecting against the damaging effects of AFB1 contamination.


Asunto(s)
Aflatoxina B1/farmacocinética , Silicatos de Aluminio/farmacología , Pared Celular/metabolismo , Colon/efectos de los fármacos , Suplementos Dietéticos , Absorción Intestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Administración Oral , Adsorción , Aflatoxina B1/administración & dosificación , Aflatoxina B1/toxicidad , Animales , Colon/metabolismo , Intestino Delgado/metabolismo , Ratas Sprague-Dawley , Distribución Tisular
6.
J AOAC Int ; 104(1): 68-77, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150938

RESUMEN

BACKGROUND: Docosahexaenoic acid (DHA) plays an important role in brain and retinal development in dogs. However, supranutritional dietary supplementation can result in health issues, including gastrointestinal bleeding, making the accurate analysis of DHA in dog food important for nutritional and welfare regulatory compliance. OBJECTIVE: The aim of this study was to conduct a validation and verification of the AOAC 996.06 method, and hence establish its fitness for purpose, for the analysis of DHA in dried dog food supplemented with a heterotrophically grown unextracted DHA-rich Aurantiochytrium limacinum biomass. METHODS: The AOAC 996.06 method, which involves the use of gas chromatography coupled to flame ionization detection (GC-FID), was used to conduct a validation of the analysis of DHA in dried dog food and the results were verified in a second laboratory. RESULTS: The method was found to be linear over the ranges analyzed and results were found to be within the acceptance criteria for precision and accuracy, verifying the applicability for this matrix. The selectivity and sensitivity of the method were also determined. CONCLUSIONS: The AOAC 996.06 method is fit for purpose for the analysis of DHA in dry dog food kibble. HIGHLIGHTS: The method can be applied to various dog food samples, supplemented with an unextracted Aurantiochytrium limacinum biomass, using alternative manufacturing methods, i.e. pelleted and extruded with no significant matrix effects being observed.


Asunto(s)
Ácidos Docosahexaenoicos , Estramenopilos , Alimentación Animal/análisis , Animales , Biomasa , Suplementos Dietéticos , Perros
7.
Toxins (Basel) ; 12(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019707

RESUMEN

The chronic intake of naturally multi-mycotoxin contaminated feed by broilers with or without titers of Yeast Cell Wall Extract (YCWE, a.k.a Mycosorb A+®), was investigated. Day-old male Cobb chicks (1600 birds, 64 pens, 25 birds/pen) were randomly allocated to diets of control (CON); diet containing mycotoxins (MT); CON + 0.2% YCWE; MT + 0.025% YCWE; MT + 0.05% YCWE; MT + 0.1% YCWE; MT + 0.2% YCWE; and MT + 0.4% YCWE. Growth performance, blood biochemical parameters and gut health were recorded over 42 days. Compared with CON, MT had reduced body weight (BW) and increased feed conversion ratio (FCR) on days 35 and 42 with increased duodenal crypt depth and fewer goblet cells. Furthermore, European Poultry Production Efficiency (EPEF) was reduced for MT versus CON. Feeding MT + 0.2% YCWE improved BW, lowered FCR, reduced crypt depth, increased goblet cell count and improved EPEF. Considering titration of YCWE (0 to 0.4%) during mycotoxin challenge, a cubic effect was observed for FCR with NC + 0.2% YCWE having the lowest FCR. These findings suggest that chronic consumption of multiple Fusarium mycotoxins present in common field concentrations can negatively impact broiler performance and gut health while inclusion of YCWE, particularly 0.2%, could be effective in counteracting mycotoxins.


Asunto(s)
Alimentación Animal/microbiología , Pared Celular/metabolismo , Pollos/crecimiento & desarrollo , Suplementos Dietéticos , Microbiología de Alimentos , Fusarium/metabolismo , Micotoxinas/toxicidad , Levaduras/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Pollos/metabolismo , Tracto Gastrointestinal/crecimiento & desarrollo , Masculino , Micotoxinas/metabolismo , Aumento de Peso
8.
Toxins (Basel) ; 12(9)2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942659

RESUMEN

This study aimed to investigate the effects of dietary AFB1 on growth performance, health, intestinal microbiota communities and AFB1 tissue residues of turbot and evaluate the mitigation efficacy of yeast cell wall extract, Mycosorb® (YCWE) toward AFB1 contaminated dietary treatments. Nine experimental diets were formulated: Diet 1 (control): AFB1 free; Diets 2-5 or Diets 6-9: 20 µg AFB1/kg diet or 500 µg AFB1/kg diet + 0%, 0.1%, 0.2%, or 0.4% YCWE, respectively). The results showed that Diet 6 significantly decreased the concentrations of TP, GLB, C3, C4, T-CHO, TG but increased the activities of AST, ALT in serum, decreased the expressions of CAT, SOD, GPx, CYP1A but increased the expressions of CYP3A, GST-ζ1, p53 in liver. Diet 6 increased the AFB1 residues in serum and muscle, altered the intestinal microbiota composition, decreased the bacterial community diversity and the abundance of some potential probiotics. However, Diet 8 and Diet 9 restored the immune response, relieved adverse effects in liver, lowered the AFB1 residues in turbot tissues, promoted intestinal microbiota diversity and lowered the abundance of potentially pathogens. In conclusion, YCWE supplementation decreased the health effects of AFB1 on turbot, restoring biomarkers closer to the mycotoxin-free control diet.


Asunto(s)
Aflatoxina B1/metabolismo , Alimentación Animal/microbiología , Pared Celular/metabolismo , Suplementos Dietéticos , Peces Planos/metabolismo , Alimentos Marinos , Levaduras/metabolismo , Aflatoxina B1/toxicidad , Animales , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Peces Planos/crecimiento & desarrollo , Peces Planos/inmunología , Microbiología de Alimentos , Microbioma Gastrointestinal , Hígado/metabolismo , Hígado/patología , Distribución Tisular
9.
Toxins (Basel) ; 12(8)2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781569

RESUMEN

Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 µg/kg supplemented in three phases; and aflatoxin: 200 µg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 µg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 µg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.


Asunto(s)
Aflatoxina B1/toxicidad , Pared Celular , Suplementos Dietéticos , Saccharomyces cerevisiae , Tricotecenos/toxicidad , Alimentación Animal , Animales , Dieta/veterinaria , Femenino , Masculino , Porcinos
10.
Regul Toxicol Pharmacol ; 95: 198-203, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29577958

RESUMEN

Docosahexaenoic acid (DHA), is an omega 3 fatty acid (n-3 FA) that has been shown to play a role in canine growth and physiological integrity and improvements in skin and coat condition. However, potential adverse effects of n-3 FA specifically, impaired cellular immunity has been observed in dogs fed diets with elevated levels of n-3 FA. As such, a safe upper limit (SUL) for total n-3 FAs (DHA and EPA) in dogs has been established. Considering this SUL, sensitive methods detecting DHA in blood serum as a biomarker when conducting n-3 FA supplementation trials involving dogs are required. In this study, an LC-ESI-MS/MS method of DHA detection in dog serum was validated and verified. Recovery of DHA was optimized and parallelism tests were conducted with spiked samples demonstrating that the serum matrix did not interfere with quantitation. The stability of DHA in serum was also investigated, with -80 °C considered suitable when storing samples for up to six months. The method was linear over a calibration range of 1-500 µg/mL and precision and accuracy were found to meet the requirements for validation. This method was verified in an alternative laboratory using a different analytical system and operator, with the results meeting the criteria for verification.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Animales , Cromatografía Liquida , Perros , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
11.
J Proteomics ; 87: 26-39, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23702330

RESUMEN

A proteomics approach based on 2D gel electrophoresis followed by HPLC-electrospray Orbitrap MS/MS was developed to investigate the replacement and the degree of the Se/S substitution in methionine and cysteine in Se-rich yeast. Capillary HPLC-inductively coupled plasma mass spectrometry (ICP-MS), employed in parallel to capHPLC-ESI MS, indicated the virtual independence of the ESI MS response of the peptide structure (in the elution range of 30-65% methanol), and hence, the use of ESI MS data to determine the SeCys/Cys and SeMet/Met substitution ratios. For the first time a considerable incorporation of selenocysteine (SeCys) in proteins of the yeast proteome despite the absence of the UGA codon was demonstrated. The SeMet/Met and SeCys/Cys ratios were determined in a large number of peptides (57 and 26, respectively) issued from the tryptic digestion of 19 Se-containing proteins located in the gel by laser ablation-ICP MS imaging. The average Se/S substitution in methionine was 42.9±35.0 and was protein dependent with ratios ranging from 5 to 160 for individual peptides. The substitution of sulphur in cysteine (14.1±4.8%) in the cysteine-containing peptides was relatively similar (ratios from 9 to 23). Taking into account that the cysteine/methionine average ratio (2:1) in the yeast protein fraction, the study allowed the conclusion that 10-15% of selenium present in Se-enriched yeast is in the form of selenocysteine making up the mass balance of selenium species. BIOLOGICAL SIGNIFICANCE: For the first time a considerable incorporation of selenocysteine (SeCys) in proteins of the yeast proteome despite the absence of the UGA codon was demonstrated. It was achieved using a proteomics approach based on 2D gel electrophoresis followed by HPLC-electrospray Orbitrap MS/MS in order to investigate the replacement and the degree of the Se/S substitution in methionine and cysteine in Se-rich yeast.


Asunto(s)
Proteoma/metabolismo , Proteómica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Selenocisteína/metabolismo , Selenometionina/metabolismo , Espectrometría de Masas/métodos , Proteoma/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Selenio/metabolismo , Selenocisteína/genética , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA