Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 296: 118743, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953955

RESUMEN

Algal blooms in urban water system is an international concern, which especially in China, have become a major obstacle to the urban water environment improvement since the preliminary achievements were made in the treatment of black and odorous water bodies. The complex blooming mechanisms require a joint regulation plan. This study established a framework that consisted of three steps, i.e., simulation, optimization, and verification, to build an optimal joint regulation plan. By taking the urban river network in Suzhou Pingjiang Xincheng as a case study, the cost-benefits of six alternative regulation measures were assessed using an algal bloom mechanism model and the discounted cash flow model based on 70 regulation scenarios. The joint regulation plan was optimized using the marginal-cost-based greedy strategy on the basis of the cost-benefits of different measures. The optimized joint plans, which were verified to be global optima, were more cost-effective than the designed regulation scenarios, and reduced the average chlorophyll-a concentrations by 55.3%-60.1% compared with the status quo. Applying the optimized cost allocation ratios of each measure to adjust the existing regulation scheme of another similar case verified that the optimization results had great generalizability.


Asunto(s)
Fósforo , Agua , China , Análisis Costo-Beneficio , Monitoreo del Ambiente , Eutrofización , Fósforo/análisis
2.
Sci Total Environ ; 753: 141821, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32891993

RESUMEN

Intense human disturbance has made algal bloom a prominent environmental problem in gate-controlled urban water bodies. Urban water bodies present the characteristics of natural rivers and lakes simultaneously, whose algal blooms may manifest multi-factor interactions. Hence, effective regulation strategies require a multi-factor analysis to understand local blooming mechanisms. This study designed a holistic multi-factor analysis framework by integrating five data mining techniques. First, the Kolmogorov-Smirnov test was conducted to screen out the possible explanatory variables. Then, correlation analyses and principal component analyses were performed to identify variable collinearity and mutual causality, respectively. After collinearity and mutual causality were treated prudently by using orthogonalization and instrumental variables, multilinear regression can be properly conducted to quantify factor contributions to algae growth. Lastly, a decision tree was used innovatively to depict the limiting threshold curves of each driving factor that restricts algae growth under different circumstances. The driving factors, their contributions, and the limiting threshold curves compose the complete blooming mechanisms, thus providing a clear direction for the targeted regulation task. A typical case study was performed in Suzhou, a Chinese city with an intricate gate-controlled river network. Results confirmed that climatic factors (i.e., water temperature and solar radiation), hydrodynamic factors (i.e., flow velocity), nutrients (i.e., phosphorus and nitrogen), and external loadings contributed 49.3%, 21.7%, 21.3%, and 7.7%, respectively, to algae growth. These results indicate that a joint regulation strategy is urgently required. Future studies can focus on coupling the revealed mechanisms with an ecological model to provide a comprehensive toolkit for the optimization of an adaptive joint regulation plan under the background of global warming.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , China , Ciudades , Minería de Datos , Análisis Factorial , Humanos , Lagos , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA