Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 353: 120291, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38325283

RESUMEN

Dredging is widely used to control internal sediment nitrogen (N) pollution during eutrophic lake restoration. However, the effectiveness of dredging cannot be maintained for long periods during seasonal temperature variations. This study used modified zeolite (MZ) as a thin-layer capping material to enhance dredging efficiency during a year-long field sediment core incubation period. Our results showed that dredging alone more effectively reduced pore water N, N flux, and sediment N content than MZ capping but showed more dramatic changes during the warm seasons. The N flux in dredged sediment in summer was 1.8 and 2.5 times that in spring and autumn, respectively, indicating a drastic N regeneration process in the short term. In contrast, the combination method reduced the extra 10% pore water N, 22% N flux, and 8% sediment organic N content compared with dredging alone and maintained high stability during seasonal changes. The results indicated that the addition of MZ to the surface of dredged sediment not only enhanced the control effect of dredging by its adsorption capacity but may also smooth the N regeneration process via successive accumulation (in the channel of the material) and activation of bacteria for months, which was evidenced by the variation in microbial diversity in the MZ treatment. As a result, the combination of dredging with modified zeolite simultaneously enhanced the efficiency and stability of the single dredging method in controlling sediment N content and its release, exhibiting great prospects for long-term application in eutrophic lakes with severe pollution from internal N loading.


Asunto(s)
Contaminantes Químicos del Agua , Zeolitas , Lagos , Nitrógeno/análisis , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Fósforo/análisis , Agua , China
2.
Sci Total Environ ; 896: 165252, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37400027

RESUMEN

Seasonal sediment internal phosphorus (P) release is known to affect annual algal blooms in eutrophic lakes. In this study, a year-long field investigation and laboratory sediment core incubation were conducted to study the relationship between sediment internal P cycling and algal growth in Lake Taihu. The results indicated that the concentrations of water total phosphorus (TP) and chlorophyll-a (Chla) correlated with seasonal temperature and were assumed to be caused by internal P release. From cold winter to warm seasons, sediment internal P (porewater P concentration and P flux) exhibits dynamic changes. Sediment porewater soluble reactive phosphorus (SRP) and its flux in the summer were approximately five times and eight times those during winter, respectively. The release of sediment mobile P in the summer decreases its concentration and can supply SRP for algal blooms. Laboratory core incubation indicated that Chla and phycocyanin concentrations in the overlying water showed similar changes to sediment porewater P and P flux when cores were incubated from low to high temperature. The results of this study indicated that warmer conditions could increase the sediment porewater P concentration and sediment P flux into the bottom waters and consequently enhance sediment P availability to algae. This study provides new insights into the relationship between internal sediment P cycling and algal blooms in Lake Taihu.


Asunto(s)
Lagos , Agua , Estaciones del Año , Fósforo/análisis , Eutrofización , China , Sedimentos Geológicos , Monitoreo del Ambiente
3.
J Environ Manage ; 342: 118321, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302172

RESUMEN

Controlling the release of sediment phosphorus (P) using chemical agents is a promising method for controlling internal P in eutrophic lakes. However, mineral P formation and changes in the organic P composition after sediment amendment with P-inactivation agents remain poorly understood. Furthermore, little is known about the changes in the sediment microbial community composition after remediation. Here, various ratios of poly aluminum chloride (PAC) and lanthanum-modified bentonite (LMB) were added to nutrient-rich sediments and incubated. Sequential P extraction, solution/solid-state 31P nuclear magnetic resonance (NMR), and microbial analyses were periodically performed on the inactivated sediments. The results indicate that PAC and LMB effectively reduced sediment iron-bound P and organic P, respectively, markedly increasing the content of aluminum- and calcium-bound P in the sediment, respectively. Solid-state 31P NMR results confirmed the formation of rhabdophane (LaPO4. nH2O) in the LMB-amended sediment. Solution 31P NMR results showed that PAC preferentially reduced the organic P fractions of pyrophosphate, whereas LMB efficiently reduced the organic P fractions of orthophosphate, monoesters, and diesters in the sediment. Compared with the control sediment, PAC addition can cause short-term negative effects on sediment microbes at high doses, whereas LMB addition can increase bacterial diversity or richness in the sediment. These results provide a deeper understanding of the differences between PAC and LMB in internal sediment P control.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Fósforo/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Fosfatos , Hierro/química , Bentonita/química , Lagos/química , Lantano/química , Eutrofización
4.
Water Res ; 233: 119797, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36870105

RESUMEN

Clean soil is a potential capping material for controlling internal nutrient loading and helping the recovery of macrophytes in eutrophic lakes, but the long-term effects and underlying mechanisms of clean soil capping under in-situ conditions remain poorly understood. In this study, a three-year field capping enclosure experiment combining intact sediment core incubation, in-situ porewater sampling, isotherm adsorption experiments and analysis of sediment nitrogen (N) and phosphorus (P) fractions was conducted to assess the long-term performance of clean soil capping on internal loading in Lake Taihu. Our results indicate that clean soil has excellent P adsorption and retention capacity as an ecologically safe capping material and can effectively mitigate NH4+-N and SRP (soluble reactive P) fluxes at the sediment-water interface (SWI) and porewater SRP concentration for one year after capping. The mean NH4+-N and SRP fluxes of capping sediment were 34.86 mg m-2 h-1 and -1.58 mg m-2 h-1, compared 82.99 mg m-2 h-1 and 6.29 mg m-2 h-1 for control sediment. Clean soil controls internal NH4+-N release through cation (mainly Al3+) exchange mechanisms, while for SRP, clean soil can not only react with SRP due to its high Al and Fe content, but also stimulate the migration of active Ca2+ to the capping layer, thus precipitating as Ca-bound P (Ca-P). Clean soil capping also contributed to the restoration of macrophytes during the growing season. However, the effect of controlling internal nutrient loading only lasted for one year under in-situ conditions, after which the sediment properties returned to pre-capping conditions. Our results highlight that clean Ca-poor soil is a promising capping material and further research is needed to extend the longevity of this geoengineering technology.


Asunto(s)
Suelo , Contaminantes Químicos del Agua , Lagos , Sedimentos Geológicos , Eutrofización , Fósforo/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , China
5.
Huan Jing Ke Xue ; 44(2): 828-838, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775606

RESUMEN

Sediment dredging has a great effect on the control of lake internal loading and is one of the important methods for lake internal loading management. In this study, the dredged area of Taihu Lake was used as the main object. An estimation of the reduction in whole lake internal loading of Taihu Lake in decade years was carried out. At the same time, we evaluated the effect of sediment dredging on the control of internal loading in the northern area of Taihu Lake (Zhushan Bay and Meiliang Bay). The results indicated that a total of 42 million cubes of sediment was dredged from Taihu Lake, and the total nitrogen, total phosphorus, and organic matter in the dredged sediment was estimated to be approximately 6.26×104 tons, 1.83×104 tons, and 11.7×105 tons, respectively. This was roughly equal to the 20 years of external loading pollution accumulated in Taihu Lake. From a long-term perspective, sediment dredging could effectively increase the water quality of Meiliang Bay within five years and that where the external loading has been controlled effectively. However, the water quality of Meiliang Bay subsequently rebounded, but dredging still reduced the nitrogen and phosphorus content in surface sediment. On the contrary, dredging could not effectively control the internal loading of Zhushan Bay, which still had a large input of external loading. The amount of sediment internal loading recovered to the original level of the pre-dredging period. In a six-year-long period of continuous monitoring of the benthic organism community of Zhushan Bay, the results indicated that sediment dredging could cause negative effects on sediment dredging initially, but the density and biomass of the benthic organisms in the dredged area had later been recovered to the un-dredged level. There was no difference between the dredged and un-dredged areas with regard to the diversity indices of benthic organisms. The results of this study indicated that sediment dredging can effectively control the lake internal loading. However, the maintenance period of dredging effects was related closely to the input intensity of the external loading. In addition, sediment dredging did not have a large influence on the benthic organism community and could recover to the original level depending on self-recovery.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Fósforo/análisis , Nitrógeno/análisis , China
6.
Water Res ; 225: 119125, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36152444

RESUMEN

Lake Taihu suffers from severe algal blooms every year, which is attributed primarily to the release of sediment phosphorus (P), namely the internal P loading. However, the overall internal P loading and the P hotspots in sediment have not been fully studied. This paper presents several methods, including sequential P extraction, the use of diffusive gradient in thin film (DGT), and intact core incubation to give a detailed investigation of sediment internal P loading as well as its roles in algal dominated zones (ADZs) and grass dominated zones (GDZs) in Lake Taihu. Sediment microbial composition was also analyzed to investigate its relationship with P fractions. The results indicate that the total P and the mobile P fraction in the ADZ sediments are generally higher than those of the GDZ sediments. The percentage of sediment mobile P to TP is similar to the mobile P in their distributions. In contrast, calcium bound P accounts for most of the TP in GDZ, while mobile P contributes the most to TP in ADZ. Overall, sediment can release 256 tons of TP and 217 tons of soluble reactive phosphorus (SRP) over a period of six months in the warmer seasons. Similarly, a high concentration of DGT-measured P was observed in ADZs that are recognized as P hotspots in Lake Taihu. Sediments in ADZ and GDZ was dominated by the bacteria Firmicutes and Proteobacteria, respectively and which were closely related with mobile P and calcium bound P in sediment, respectively. GZD seems to be able to retain more P in sediments, thereby reducing its contribution to of internal P loading. These results indicate that the difference in sediment composition between ADZ and GDZ affects their roles in sediment internal P loading, therefore, different management strategies should be used to combat sediment internal P loads in the two zones.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Fósforo/análisis , Sedimentos Geológicos , Calcio , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Plantas , China , Eutrofización
7.
Huan Jing Ke Xue ; 43(7): 3672-3681, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791550

RESUMEN

In order to study the comprehensive effects of different types of dehydrating agents on the dewatering and solidification of dredged sediments, this study took the dredged sediments of Taihu Lake as the research object and selected microorganisms, polymeric iron aluminum salts, organic polymers, organic-inorganic composites, and aluminum salt microorganisms. These five types of composite dehydrating agents were used to conduct a three-month solidification test on the dredged sediment by means of geotechnical pipe bag solidification. The results of the study showed that the dehydration efficiency of organic polymers and organic-inorganic composite chemicals was better. After one month, the water content of sediment dropped to 61.78% and 63.26%, respectively, which then dropped to 40.56% and 32.16% after three months. Compared with that of the unsolidified sludge, the total nitrogen of the bottom sludge after solidification by the organic-inorganic composite agent was reduced by 74.82%, reaching 591 mg·kg-1, primarily due to the reduction in ammonia nitrogen. The solid sludge contained mainly aluminum-bound phosphorus, calcium-bound phosphorus, and iron-bound phosphorus. Among them, four groups (organic-inorganic composite) had the largest reduction in active phosphorus, with the lowest being 64.3 mg·kg-1. In addition, organic polymer agents had the best curing effect on heavy metals, the comprehensive ecological risk index of heavy metals was reduced by 51.3%, and the leaching toxicity concentration was far below the standard threshold. This study showed that organic polymers and organic-inorganic composite medicaments have a better effect on the dehydration and solidification of bottom sludge and thus have good application prospects.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Aluminio , Deshidratación , Monitoreo del Ambiente , Sedimentos Geológicos/química , Humanos , Hierro , Metales Pesados/análisis , Nitrógeno/análisis , Compuestos Orgánicos , Fósforo/análisis , Polímeros , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis
8.
Chemosphere ; 305: 135382, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35718038

RESUMEN

Phosphorus (P) is normally considered as the limited nutrient for shallow freshwater lakes and can potentially trigger eutrophication on account of high concentrations. Due to the various transportation and transformation processes, P source apportionment and management in lake ecosystems have become more and more difficult. Combining with sequential extraction of P fractions and mineralogical analysis, the isotopic compositions of oxygen in phosphate (δ18OP) of resin-extractable P from the different samples including soil, estuary sediments, pond sediments, and lake sediments in the Shijiuhu Lake catchment, China, were investigated. The results showed that δ18OP values ranged from +15.23 to +21.92‰ in agricultural soil, +16.53 to +24.10‰ in estuary sediments, +18.90 to +20.90‰ in pond sediments, and +17.42 to +19.70‰ in lake sediments. Isotopic signatures indicated that chemical fertilizers with heavier δ18OP values (+20.70 to +26.50‰) were the predominant contributors of P in the soil. The river transportation together with Fe/Al-P desorption on anaerobic condition simultaneously stimulated the enrichment of P in the lake sediments, even though the biotic activity regulated the isotope values moving toward the equilibrium. Eroded soil was the important source of P in lake and pond sediments via drainage and runoff, and conserved the source isotope signal in the samples. Stronger biotic activity in the aquatic environments dragged δ18OP values toward the equilibrium. However, conspicuous off-equilibrium isotope signature suggested the terrestrial sources in the aquatic ecosystems. The calculation of two end-member linear mixing models suggested that soils also predominantly controlled the P occurrence in the lake sediments with contribution higher than 80%, indicating that decreasing inputs from the agricultural activities is important in P reduction on catchment scale. Generally, δ18OP from different sources can provide indirect and important evidences for the identification and management of P sources in the lake catchment.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Isótopos de Oxígeno/análisis , Fosfatos/análisis , Fósforo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis
9.
Sci Total Environ ; 833: 155233, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35421471

RESUMEN

Developing a suitable substrate with high phosphorus (P) sorption capacity, low solubility, and high hydraulic loading for constructed wetlands (CWs) is crucial for their functions. In this study, we used attapulgite and biochar as base materials to prepare a lanthanum/aluminum (La/Al) amended attapulgite/biochar composite as a novel P filter using a one-step drying process and subsequent high-temperature thermal treatments. Results indicated that the solidified poly aluminum chloride (PAC) amended attapulgite/biochar (SAl@AB) has a higher solubility than the solidified La-modified attapulgite/biochar (SLa@AB) and the solidified PAC and La co-modified attapulgite/biochar (SAlLa@AB). Therefore, SAl@AB is not suitable to be used as a substrate for constructed wetlands (CWs). Batch studies indicated that SLa@AB and SAlLa@AB have maximum P sorption capacities of 12.8 mg/g and 21.3 mg/g, respectively. The P sorption rates are higher than those found in most substrates used in constructed wetlands. Additionally, pH and coexisting ions exert minor effects on the P removal performance of SAlLa@AB. Column experiments indicated that longer hydraulic retention time (HRT) favors the removal of influent P. A 120-day column experiment indicated that an average of 95% of the P influent (10 mg P/L) could be removed by the SAlLa@AB with an HRT of 8 h. The P forms analyzed by sequential extraction indicated that P removed by SAlLa@AB occurs through the formation of calcium-bound and Al-bound P fractions, which can account for 68.7% and 18.8% of the total phosphorus, respectively. The formation of lanthanum/aluminum phosphate precipitation was the main P removal mechanism of SAlLa@AB. This was further confirmed by an XPS analysis, showing a formation of La-O-P and Al-O-P inner-sphere complexes after P sorption by SAlLa@AB. The results of this study indicate that SAlLa@AB was a promising substrate for future CWs.


Asunto(s)
Fósforo , Humedales , Aluminio , Carbón Orgánico , Lantano , Compuestos de Magnesio , Fósforo/química , Compuestos de Silicona , Eliminación de Residuos Líquidos/métodos
10.
Environ Pollut ; 292(Pt B): 118471, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774673

RESUMEN

Sediment phosphorus (P) release and retention are important in controlling whole-system P dynamics and budget in eutrophic lakes. Here we combine short- (seasonal) and long-term (years to decades) studies to quantify the internal P loading and P release potential in the sediments of Lake Chaohu and explore their controlling mechanisms. In the west region of the lake, short-term P diffusive fluxes ranged from 0.2 mg/m2·d-1 to 6.69 mg/m2·d-1 (averaged 2.76 mg/m2·d-1) and long-term net P release ranged from 2.25 mg/m2·d-1 to 8.94 mg/m2·d-1 (averaged 5.34 mg/m2·d-1); in the east region, short-term P diffusive fluxes varied from 0.73 mg/m2·d-1 to 1.76 mg/m2·d-1 (averaged 1.05 mg/m2·d-1) and long-term P release ranged from 0.13 mg/m2·d-1 to 4.15 mg/m2·d-1 (averaged 1.3 mg/m2·d-1). Both short- and long-term P releases were in the same order of magnitudes as the external P inputs (3.56 mg/m2·d-1). Comparison of the long-term and short-term sediment P release indicates that while the high summer P release in the east might only represent a snapshot value, the sediments in the west contribute to large P release for years or even decades, impeding water quality recovery under lake management. Mobilization of surface sediment legacy P accounted for 81% of short-term P release. The long-term release was dominated by remobilization of iron bond P (BD-P) (average 52.1%) at all sites, while Aluminium-bound P (NaOH-rP) exhibited partly reactive and potentially mobile, releasing P to the water column in most sites in the west. Our study demonstrates the importance of sediments as P sources in lake Chaohu. The combination of short- and long-term P release studies can help understand the roles of sediments in regulating the water quality and eutrophication.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
11.
J Environ Sci (China) ; 109: 181-192, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34607667

RESUMEN

Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems, but the lack of test methods hinders the understanding of removal mechanism and application. In this study, we used the novel technologies combined of Diffusive gradients in thin films (DGT), Planar optode (PO), and Non-invasive micro-test technology (NMT) to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time. Results of the high-resolution in situ measurement showed that labile P(LPDGT) fluxes at the surficial sediment significantly decreased from approximate 120, 140, and 200 pg/ (cm2•sec) via 30 days incubation period to 17, 40, and 56 pg/(cm2•sec) via that of 15 days. Obvious synchronous increase of LPDGT was not detected in overlying water, suggesting the intense assimilation of dissolve reactive P via root over time. PO measurement indicated that O2 concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100% saturation along with the root stretch downwards. NMT detection of roots showed the obvious O2 inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec) from surroundings via aerenchyma on different treatment conditions. Different from previous reports, gradually saturating O2 concentrations around the rhizosphere was principally driven by O2 penetration through interspace attributing to root stretch downward rather than root O2 leakage. Increased O2 concentrations in deep sediment over time finally induced the oxidization of labile Fe(II) into Fe(III) bound P and local P immobilization.


Asunto(s)
Potamogetonaceae , Contaminantes Químicos del Agua , Ecosistema , Compuestos Férricos , Sedimentos Geológicos , Fósforo , Rizosfera , Contaminantes Químicos del Agua/análisis
12.
Water Res ; 200: 117258, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34058482

RESUMEN

Sequential extraction and in-situ diffusive gradients in thin films (DGT) techniques were used to determine phosphorus (P) fractions and high-resolution 2D fluxes of labile PDGT, Fe2+DGT, and S2-DGT in sediment systems. The diffusion fluxes were subsequently calculated for different scenarios. Dynamic diffusion parameters between solid sediment and solution were also fitted using the DIFS (DGT-induced fluxes in sediments) model. The results suggested that Fe-bound P (Fe-P) was the dominant pool which contributed to the resupply potential of P in the water-sediment continuum. Significant upward decreases of labile PDGT, Fe2+DGT, and S2-DGT fluxes were detected in pristine and incubated microcosms. This dominance indicated the more obvious immobilization of labile P via oxidation of both Fe2+ and S2- in oxidic conditions. Additionally, these labile analytes in the microcosms obviously decreased after a 30-day incubation period, indicating that water-level fluctuations can significantly regulate adsorption-desorption processes of the P bound to Fe-containing minerals within a short time. Higher concentrations of labile PDGT, Fe2+DGT, and S2-DGT were measured at the shallow lake region where more drastic water-level variation occurred. This demonstrates that frequent adsorption-desorption of phosphate from the sediment particles to the aqueous solution can result in looser binding on the solid sediment surface and easier desorption in aerobic conditions via the regulation of water levels. Higher R values fitted with DIFS model suggested that more significant desorption and replenishment effect of labile P to the aqueous solution would occur in lake regions with more dramatic water-level variations. Finally, a significant positive correlation between S2-DGT and Fe2+DGT in the sediment indicated that the S2- oxidization under the conditions of low water-level can trigger the reduction of Fe(III) and subsequent release of active P. In general, speaking, frequent water-level fluctuations in the lake over time facilitated the formation and retention of the Fe(II) phase in the sediment, and desorption of Fe coupled P into the aqueous solution when the water level was high.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Difusión , Monitoreo del Ambiente , Compuestos Férricos , Sedimentos Geológicos , Cinética , Lagos , Fósforo/análisis , Agua , Contaminantes Químicos del Agua/análisis
13.
Water Res ; 189: 116644, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221586

RESUMEN

Dredging and in situ adsorbent inactivation are two methods which are frequently used in eutrophic water bodies such as ponds, lakes and estuaries to control internal phosphorus (P) loading from sediments. However, their effects and modes on the control of sediment P loading has been seldom compared. In this study, a long-term sediment core incubation experiment in the field was undertaken to investigate changes in sediment P loading (P fluxes, supply ability and forms of P and transformation) comparing two remediation techniques, that of lanthanum-modified bentonite (LMB) addition or dredging to a control. A 360-day field investigation indicated that LMB addition more effectively reduced pore water P concentrations and sediment P fluxes than dredging in comparison with the control. On average, dredging and in situ LMB inactivation reduced the P flux by 82% and 90%, respectively relative to the control sediment. Whilst both the LMB inactivation and dredging can reduce the mobile P concentration, the impact of LMB in reducing mobile P was demonstrated to be more prolonged than that of dredging after 360 days. The P fraction composition in the LMB inactivated sediment differed significantly from the dredged and control sediment. Contrary to physical removal of dredging, chemical transformation of sediment mobile P and Al-P into Ca-P is the main function mode of LMB for sediment internal P control. Both LMB addition and dredging caused changes in the composition of sediment bacterial communities. Whilst LMB addition increased bacterial diversity, dredging temporarily reduced it. This study indicates that in situ inactivation by LMB is superior to dredging in the long-term control of sediment P loading.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Bentonita , Eutrofización , Sedimentos Geológicos , Fósforo , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 54(18): 11602-11610, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815724

RESUMEN

In this study, a green solvent-free drying production method was used to prepare an attapulgite clay/lanthanum and aluminum (ACLA) composite as a novel phosphorus (P) sorbent to immobilize P in lake sediment. The prepared sorbent contained around 5% La and 2% Al. The maximum P sorption capacity of ACLA can reach as high as 34.6 mg P/g and is higher than most clay-based P sorbents. The addition of ACLA into sediment can effectively reduce sediment mobile P and simultaneously induce elevated inert P forms of HCl-P and NaOH-rP, which also can increase the stability of P in sediment. Long-term sediment core incubation indicated that 72.2% of total phosphorus and 90.7% of soluble reactive phosphate (SRP), as well as 44.2% SRP fluxes, can be reduced with a dosage of 466 mg/m2 of ACLA when compared with the control treatment. The P binding mechanism by ACLA is assigned to the intersphere P complexes and is mainly because of the formation of rhabdophane and aluminum phosphate precipitation on ACLA. This is confirmed by results of the XPS and 31P NMR spectroscopy, which indicate that the La/Al coexisting novel P inactivation agents are a promising sorbent for lake sediment P control.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Aluminio , Sedimentos Geológicos , Lantano , Compuestos de Magnesio , Fósforo , Compuestos de Silicona , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 741: 140203, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32570068

RESUMEN

Particulate phosphorus (P) dominates the total P (TP) content in lacustrine water columns and is a primary source of dissolved P in turbid eutrophic shallow lakes. However, the spatiotemporal variability of P compositions in suspended particulate matter (SPM) remains poorly understood. In this study, we applied chemical extraction and solution 31P nuclear magnetic resonance (31P NMR) to assess the seasonal variations of SPM P compositions from a shallow turbid lake (Lake Chaohu, China) and its main river tributaries. P fractionation analysis indicated that mobile P (the sum of labile-P, iron-bound P, and organic P) accounted for >60% of the TP in SPM and showed high spatiotemporal variability throughout the year-long field investigation. In most seasons, riverine SPM (in urban rivers or rivers with high flow) contained a higher mobile P content than that of the lake and was therefore a dominant source of lacustrine mobile particulate P. Solution 31P NMR identified five types of P compounds in SPM, with highest contributions from orthophosphate. Organic P components and concentrations showed high seasonal variability, and elevated p values occurred during the summer algal bloom. The correlation analysis between organic and inorganic P fractions inferred the possible degradation of organic P into reactive inorganic components of SPM. Consequently, biological or chemical processes would further transform the labile inorganic P into soluble reactive phosphorus, which is readily utilized by lacustrine algae. Our results suggest that the labile forms of P in SPM were highly dynamic and significantly contributed to the eutrophication of the turbid shallow lake.


Asunto(s)
Lagos , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Material Particulado/análisis , Fósforo/análisis
16.
Environ Pollut ; 262: 114292, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32179221

RESUMEN

It is well known that sediment internal loading can worsen lake water quality for many years even if effective measures have been taken to control external loading. In this study, a 12-month field study was carried out to reveal the relationship between sediment phosphorus (P) and nitrogen (N) forms as well as their fluxes across sediment-water interface from the most polluted area of Lake Chaohu, a large shallow eutrophication lake in China. The possible contribution of mobile fraction of P and N to lake eutrophication is also analyzed. The results indicate that the content of total P and N and their forms in water and sediment were rather dynamic during the year-long field investigation. Low concentrations of P and N from sediment and overlying water were observed in the winter but increased sharply in summer. The phosphate and ammonium fluxes showed evident seasonal variation, and higher fluxes can be observed in warmer seasons especially during the period of algal bloom with high sedimentation. The reduction of ferric iron and degradation of organic matter could be responsible for the increased P flux from sediment in algal bloom seasons, which is consistent with the seasonal variation of P forms in sediment. A comparison of the mole ratio of P flux:N flux to both the P:N mole ratio in sediments and the Redfield ratio was used to further distinguish the dominant sediment P forms' release during seasonal variation. Moreover, the anoxic condition and enhanced microbial activity in warmer seasons contribute a lot to the ammonium release from sediment. Consequently, the nutrient fluxes seasonally influence their corresponding nutrient concentrations in the overlying water. The results of this study indicate that sediment internal loading plays an important role in the eutrophication of Lake Chaohu.


Asunto(s)
Lagos , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Eutrofización , Sedimentos Geológicos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis
17.
Environ Pollut ; 246: 207-216, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30554127

RESUMEN

Dredging is frequently implemented for the reduction of internal nitrogen (N) and phosphorus (P) loadings and the control of eutrophication. Residuals during dredging activities and external pollution loadings after dredging both commonly contribute to influence the effectiveness of dredging and have been widely discussed. In the current study, the exchanges of N and P across the sediment-water interface (SWI) to these two factors were compared in a six-month field incubation experiment. The results showed that the continuous deposition of external suspended particulate matter (SPM) led ammonium nitrogen (NH4+N) and soluble reactive phosphorus (SRP) fluxes across the newly formed SWI to increase by factors of 4.16 and 12.71, respectively, while residual material caused the same fluxes to increase by factors of 2.06 and 5.06. Both the deposition of external SPM and the residual matter led to higher increase of the fluxes of P across the SWI than those of the fluxes of N across the SWI after dredging. The SPM easily adsorbed P in the water due to extensive adsorption of water soluble organic matter (consisting primarily of easily-decomposed humic-like substances), iron, and aluminum. However, the decomposition of organic matter in the SPM after the deposition on the dredged sediment accelerated the dissolution of redox-sensitive P and organic P across the SWI after dredging. Both the increase in the fluxes of N and P across the SWI would further increase the concentrations of N and P in the overlying water and thereby aggravate the eutrophication status in lakes. More frequent dredging operations might be necessary to reduce the fluxes of N and P from the sediment due to the continuous influence of the external SPM and the residual matter.


Asunto(s)
Sedimentos Geológicos/análisis , Lagos/química , Nitrógeno/análisis , Material Particulado/química , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Adsorción , Monitoreo del Ambiente/métodos , Eutrofización , Sustancias Húmicas/análisis , Hierro , Ciclo del Nitrógeno , Oxidación-Reducción , Agua/química
18.
Sci Total Environ ; 646: 37-48, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30044994

RESUMEN

Reconstructions of past fluvial contamination through the analysis of deep sediment cores are rarely reported in literature. We examined the phosphorus fractions in a deep (2.6 m) sediment core of the Lambro River downstream of the highly anthropized Milan metropolitan area and upstream of the Po river the main Italian watercourse. The core covered the period 1962-2011. Total phosphorus concentrations resulted typical of a strongly impacted environment (4788 mg P kg DW-1 on average) with the highest concentrations related to the 1960s (7639 mg P kg DW-1) reflecting the period of maximum demographic growth. Afterwards, phosphorus concentrations decreased thanks to the infrastructural and legislative initiatives carried out in the 1980s and the 1990s to reduce the impact of urban point sources. Subsequently, total phosphorus concentrations stabilized on values around 3000 mg P kg DW-1 and did not diminish further, even after the second phase of infrastructural interventions carried out in the second half of the 2000s. This was related to the increasing relative impact of the combined sewer overflows in the sewage system and to the strong phosphorus enrichment of the basin. Most of the phosphorus was in inorganic forms (86% of the total) that have been identified as the final target of the domestic effluent inputs. The contribution of organic phosphorus was lower but constant over the period 1962-2011. It likely originated from the agricultural areas located south of the city of Milan. In conclusion, this study underlines how past interventions have been effective in reducing urban point sources but it also highlights the current difficulties related to the growing importance of other sources influenced by the surface runoff (i.e., combined sewer overflows and agriculture). The study also emphasizes a general phosphorus enrichment of the Lambro River basin and its impact on the Po River and the Adriatic Sea.


Asunto(s)
Monitoreo del Ambiente , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Ciudades , Sedimentos Geológicos , Italia , Ríos , Contaminación Química del Agua/estadística & datos numéricos
19.
Sci Total Environ ; 610-611: 101-110, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28803188

RESUMEN

Clay-based phosphorus (P) sorbents have been increasingly used as geoengineering materials for the management sediment-derived internal P loading in eutrophic lakes. However, the long-term behavior of these sorbents has remained elusive along with their response to burial under suspended particulate matter (SPM), and their effect on macroinvertebrate communities occupying dynamic regions at the sediment-water interface of shallow and turbid lakes. In this study, field mesocosm experiments were undertaken in Lake Chaohu, China, to study the effects of the application of lanthanum-modified bentonite (LMB) and thermally-modified calcium-rich attapulgite (TCAP) on sediment internal P loading and to assess their influence on macroinvertebrate community structure. A complementary laboratory core incubation study was also undertaken to investigate the effects of SPM deposition on LMB and TCAP performance. In the field, both LMB and TCAP effectively intercepted P released from sediment for up to five months. A P fractionation analysis indicated that LMB and TCAP application results in a substantial increase in inert P fractions in sediment. Laboratory studies indicated that deposition of SPM may increase in mobile P both in the upper sediment and across the new post-SPM deposition sediment-water interface. Importantly, a comparison of sediment chemical extractions and estimated P fluxes suggests that chemically-defined forms of P in the sediment may be used as a proxy to estimate the net sediment P flux. Significantly, the surficial application of either LMB or TCAP did not cause negative effects on macroinvertebrate communities. This study indicates that to sustain a low P flux across the sediment-water interface in shallow, turbid lakes, repeat dosing of geoengineering materials, temporally aligned to the deposition of fluvial SPM, may be required.

20.
Environ Pollut ; 231(Pt 2): 1274-1283, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28943351

RESUMEN

Identifying phosphorus (P) sources, distribution and export from lowland polders is important for P pollution management, however, is challenging due to the high complexity of hydrological and P transport processes in lowland areas. In this study, the spatial pattern and temporal dynamics of P export coefficient (PEC) from all the 2539 polders in Lake Taihu Basin, China were estimated using a coupled P model for describing P dynamics in a polder system. The estimated amount of P export from polders in Lake Taihu Basin during 2013 was 1916.2 t/yr, with a spatially-averaged PEC of 1.8 kg/ha/yr. PEC had peak values (more than 4.0 kg/ha/yr) in the polders near/within the large cities, and was high during the rice-cropping season. Sensitivity analysis based on the coupled P model revealed that the sensitive factors controlling the PEC varied spatially and changed through time. Precipitation and air temperature were the most sensitive factors controlling PEC. Culvert controlling and fertilization were sensitive factors controlling PEC during some periods. This study demonstrated an estimation of PEC from 2539 polders in Lake Taihu Basin, and an identification of sensitive environmental factors affecting PEC. The investigation of polder P export in a watershed scale is helpful for water managers to learn the distribution of P sources, to identify key P sources, and thus to achieve best management practice in controlling P export from lowland areas.


Asunto(s)
Monitoreo del Ambiente , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , China , Ciudades , Hidrología , Lagos , Estaciones del Año , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA